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ABSTRACT 

Photopolymerization is considered an attractive alternative in many 

industries to traditional polymerization processes.  The advantages of 

photopolymerization over other types of polymerization include elimination of 

heat sources, faster cure times, and reduction in the use of volatile organic 

solvents.  Despite these environmental and cost-saving advantages, 

photopolymerizations have several limitations.  Light attenuation can be a 

problem for systems containing pigments or fillers.  The radiation source 

penetrates only to a shallow depth beneath the surface, limiting the 

thickness of strongly pigmented or filled coatings and films.  

Photopolymerization is also generally limited to systems with simple 

geometries that can be uniformly illuminated.  Coatings on three-

dimensional substrates, or other systems with complex geometries, are 

difficult to uniformly cure.  These problems can be solved by “shadow cure,” 

which is defined as the reactive diffusion of photoinitiated active centers into 

regions of a polymer that are unilluminated.   In this contribution, the 

generation and subsequent spatial and temporal evolution of the active 

center concentrations during illumination are described using the differential 

equations that govern the light intensity and photoinitiator concentration for 

polychromatic illumination.  Reactive diffusion of the active centers during 

the post-illumination period is characterized, and shown to result in cure of 

unilluminated regions.  A kinetic analysis is performed by coupling the active 

center concentration profiles with the propagation rate equation, yielding 

predicted cure times that are compared with experimental results.  This 

analysis is used for the evaluation of cationic shadow cure in pigmented 

photopolymerization systems, and systems with complex geometries.  The 
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extensive characterization of cationic systems is then applied to free-radical 

photopolymerization to examine the potential of shadow cure for active 

centers with much shorter lifetimes.  An example of a free-radical 

photopolymerization system is presented in which the dimensional scales are 

small enough to utilize the short lifetimes of free-radical active centers for 

shadow cure.  The results for both free-radical and cationic shadow cure 

indicate that the reactive diffusion of photoinitiated active centers may be 

used for effective cure in unilluminated regions of a photopolymer.  This 

research will potentially allow photopolymerization to be used for 

applications in industries where it has never before been utilized. 

Abstract Approved: ___________________________________   
    Thesis Supervisor 

  ____________________________________  
    Title and Department 

  ____________________________________  
    Date 
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CHAPTER 1  

BACKGROUND AND SIGNIFICANCE 

1.1 Introduction 

Radiation initiated polymerization of multifunctional monomers in the 

presence of a photoinitiator is one of the most efficient methods for producing 

highly crosslinked polymer materials.  Photopolymerizable coatings and films 

have gained acceptance in many multi-million dollar industries.  Some 

examples of applications for radiation curable coatings and films include 

protective coatings for plastics, metals, and woods such as flooring and 

cabinetry [1,2];  in-situ photopolymerizable bioadhesives such as dental 

sealants [3-5]; UV-curable ink-jet printing inks [6,7]; adhesives for flat panel 

displays and other microelectronics [8-10]; printed circuit boards and other 

optical lithography applications [11-13]; optical fibers and optical data 

storage such as CDs and DVDs [14,15]; and many others.  In this chapter, the 

current state of technology for photopolymerizable coatings and films is 

described within the context of some applications of photopolymers, and the 

limitations to the use of photopolymerization for these applications are 

explored.  The need to overcome these limitations forms the basis for the 

research that is presented in this contribution. 

1.2 Photopolymerization Background 

Photopolymerization can be defined as the effectively instantaneous 

conversion of a liquid resin into a solid, insoluble polymer by exposure to 

ultraviolet or visible radiation [16].  Radiation curing is considered an 

attractive alternative to traditional polymerization processes due to many 

advantages.  Polymer coatings are typically produced using thermal 

polymerization, which uses heat to generate active centers that polymerize 
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the coating after a liquid monomer has been applied to a substrate.  

Industrial heat curing requires large amounts of energy to operate high 

temperature ovens for extended periods of time.  Photopolymerization 

eliminates the need for heat curing, resulting in significant energy and cost 

savings.  As an additional consequence of eliminating the thermal sources, 

heat sensitive substrates such as printed circuit boards and other electronic 

assemblies that can be produced by photopolymerization are not damaged by 

heat curing.  Any heat buildup that may be caused by the radiation source in 

the photopolymer or substrate is minimal, and is quickly dissipated for thin 

film applications.  Improved manufacturing efficiency also results from 

photopolymerization processes due to the comparatively short time scales 

required for radiation curing. Higher line speeds can be achieved and 

multiple curing steps can be performed in a single manufacturing line.  

Finally, the use of volatile organic compounds (VOCs) is reduced or 

eliminated because solvent-free resins are generally used in 

photopolymerizable formulations.  Before environmental regulation began in 

the 1970s, many industrial coatings contained as much as 80% solvent, and 

large quantities of solvent were released into the atmosphere [14].  Again, 

manufacturing efficiency can be improved by eliminating the need for solvent 

vapor handling systems.  These advantages make photopolymerization better 

for the environment than other types of polymerization processes. 

Despite all of these advantages, photopolymerizations have some 

disadvantages that cause their use to be limited in some industries.  Light 

attenuation can be a problem for coatings or films containing pigments or 

fillers.  Pigments are often added to coatings to provide color or to hide the 

surface of the substrate, but can compete with the photoinitiator by absorbing 

the initiating light.  For this reason, free-radical photopolymerizations of 
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pigmented coatings are typically limited to extremely thin applications, such 

as printing inks. The same light attenuation problem exists for other types of 

filled systems, such as nanocomposites [17].   

Another barrier to the use of photopolymerization in many applications 

is the inability to cure systems with complex geometries. 

Photopolymerization is commonly used for curing coatings on two-

dimensional substrates.  However, when the need arises for coating 

substrates with complex geometries, traditional photopolymerization suffers 

several disadvantages.  Photopolymerizations are typically dependent upon 

the generation of short-lived free-radicals that are sensitive to termination by 

oxygen.  Oxygen reacts with free-radical active centers, prevents the 

polymerization from proceeding until all of the oxygen is consumed, and 

results in the formation of harmful peroxides and hydroperoxides.  Oxygen 

inhibition can lead to incomplete polymerization, slow reaction rates, and 

tacky surfaces.  Expensive methods are used to overcome this problem, such 

as blanketing a photopolymer system with an inert gas such as nitrogen. 

Furthermore, free-radical photopolymerization reactions proceed only 

in the presence of UV irradiation, so the reactions terminate when the UV 

irradiation ceases.  For these reasons, free-radical photopolymerizations fail 

to provide a practical and economical method for coating surfaces with 

irregular or intricate shapes.  Some of the methods being developed to 

overcome these problems for curing coatings on three-dimensional objects 

include plasma curing [18], dual-cure systems [19-21], and robotic UV curing 

[22].  In this contribution, cationic photopolymerization is presented as a 

solution to some of these limitations to photopolymerization. 
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1.3 Cationic Photopolymerization and Shadow Cure 

Cationic photopolymerization has been shown to overcome some of the 

limitations of the more common free-radical photopolymerization.  Cationic 

photopolymerization is an alternative to free-radical photopolymerization 

offering several unique advantages.  Photo-generated cationic active centers 

exhibit extremely long lifetimes.  They are not sensitive to free-radical 

scavengers, such as oxygen, and do not terminate by a radical-radical 

termination mechanisms.  For these reasons, the long-lived cationic active 

center lifetimes can result in photopolymerization reactions that proceed long 

after irradiation has ceased, until the monomer is consumed or the active 

centers become entrapped in the polymer matrix.   

Despite these advantages over free-radical systems, the development of 

efficient cationic photopolymerization systems has been challenging.  

Cationic photoinitiators originally developed to generate cationic active 

centers, such as aryldiazonium salts, were very costly, had poor stability, and 

would produce inferior physical properties in the resulting polymer.  

Diarlyiodonium salt photoinitiators and triarylsulfonium salt photoinitiators 

were developed in the 1980s in a joint patent between 3M and General 

Electric [23].  These cationic photoinitiators, commonly used today, are 

thermally stable over a wide range of temperatures, absorb light very 

efficiently with an optical yield of approximately 0.7, are inexpensive to 

manufacture, and result in improved polymer physical properties.  The 

commercial availability of these newer cationic photoinitiators has spurred 

research into the kinetics, mechanisms, and physical properties of cationic 

photopolymerization over the past two decades.  Cationically polymerizable 

monomers were subsequently developed to provide reaction rates and 

physical properties that could rival those of free-radically polymerized 
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monomers. Vinyl ethers typically have high polymerization rates, but can 

result in runaway reactions.  Epoxide reactions are easily controlled, but the 

polymerization rate is slow in comparison to vinyl ethers and acrylates.  

Finally, high ring-strain epoxides, such as 3,4-epoxy-cyclohexylmethanyl 3,4-

epoxy-cyclohexanecarboxylate (EEC) have become an industrial standard for 

for their high reactivity and excellent physical properties.  Cationic 

photopolymerization can also be used for other important classes of 

monomers, such as oxetanes and siloxanes.  Many cationically polymerizable 

monomers exhibit exceptional physical properties, such as clarity, adhesion, 

abrasion resistance, and chemical resistance.  Some cationic photopolymers 

exhibit less shrinkage than their free-radical counterparts, such as acrylates. 

Several investigators have shown cationic active centers to lead to 

dark cure, or post-polymerization [24-26].  Due to their long lifetimes, 

cationic active centers can also be responsible for a process known as shadow 

cure, or cure in regions that have never been illuminated [27].  The cationic 

active center lifetimes are long enough for diffusion to take place, either 

during the illumination period or after the illumination has ceased.  This 

mobility of the cationic active centers facilitates cationic cure in recessed or 

shadow areas of a substrate that have not been directly exposed to 

irradiation. This contribution provides a theoretical and experimental 

investigation of cationic shadow cure in pigmented systems and in systems 

requiring cure in multiple spatial dimensions.  In the period of time during 

which the photopolymer is illuminated, the cationic active centers are 

preferentially generated at the surface to produce a sharp concentration 

gradient that provides a driving force for diffusion into regions of unexposed 

monomer.  An analysis of the active center diffusion that takes place post-

illumination is used to characterize shadow cure in these systems.  Cationic 
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active center mobility is shown to have the potential to make 

photopolymerization possible in some applications where it has not been 

commonly utilized. 

1.4 A Case for Shadow Cure in Free-Radical 
Photopolymerizations 

Free-radical active centers have significantly shorter lifetimes than 

cationic active centers, and tend to terminate immediately upon cessation of 

the illuminating light source.  However, some cutting edge applications for 

photopolymers may require the development of shadow cure in free-radical 

systems.  Advances in microelectronics have led to an increase in demand for 

circuits with increasingly small pitch, or spacing between interconnects.  

Despite the extremely short lifetimes of the free-radical active centers, 

mobility of free-radicals within the increasingly small dimensional scales 

required by microelectronics is becoming a possibility. 

One application in which free-radical shadow cure in 

photopolymerizations may become feasible is polymer-based conductive 

adhesives, which are substitute for lead-based solders [9].  Electrically 

conductive adhesives provide an environmentally friendly solution for 

interconnections in many current electronics applications.  Isotropic 

conductive adhesives (ICAs) are heat-curable materials containing an 

isotropic concentration of conductive particles, typically silver-filled epoxides 

that allow current to flow in all directions through the cured polymer.  These 

adhesives can be used to electrically interconnect non-solderable substrates 

such as ceramics or plastics, or to replace solder for thermally-sensitive 

components.  A second type of electrically conductive adhesive is anisotropic 

conductive adhesive, which allow current to flow along a unidirectional axis 

[8].  This type of adhesive is a composite containing fine electrically 
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conductive particles uniformly dispersed in a polymer matrix designed to 

provide electrical interconnection only at planned sites where the particles 

come into contact with a conductive substrate.  The most common form these 

adhesives is a heat-curable, thermoplastic, anisotropic conductive film (ACF) 

used in flexible printed circuits.   Ninety percent of all ACFs are currently 

sold for use in flat panel displays such as LCDs [10].  They are also used in 

flexible printed circuits, in which electronic circuits are mounted on flexible 

plastic substrates.  Flexible printed circuits are being used in many 

applications, such as electronic books and other forms of electronic paper, 

displays for cameras and cell phones, and computer keyboards. 

In this contribution, one possible formulation that could be used in a 

photopolymerizable ACF assembly is presented in which free-radical shadow 

cure is proposed as a method for attaining full polymerization in 

unilluminated regions, behind electrodes and around conductive particles.  

Considerations for the selection of a specific formulation for this application 

are explored, and light sources required for this application are evaluated.  

The motivation behind this research is to eliminate the heating step 

traditionally required for curing a conductive adhesive film.  The advantages 

of replacing the heat-curing process with photopolymerization in this type of 

microelectronics application include protecting the heat-sensitive circuits 

from elevated temperatures, minimizing cure times, reducing energy usage, 

and eliminating the use of VOCs. 

Aside from the specific scenario for free-radical shadow cure outlined 

above, applications have generally not yet been developed in which diffusion 

of free-radical active centers could be used to cure unilluminated regions of a 

photopolymer.  In typical applications currently employing photo-

polymerization for microelectronics, such as printed circuit boards and other 
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types of microlithography, the goal is usually to attain high resolution.  Deep 

UV wavelengths are utilized in these industries to enhance resolution, and 

diffusion of active centers presents a limitation rather than an asset.  

Therefore, the concept of free-radical shadow cure is extremely novel, has 

likely never before been utilized, and represents a great potential for the use 

of photopolymerization in the cutting-edge field of microelectronics. 
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CHAPTER 2  

OBJECTIVES 

The previous chapter illustrates that there is a compelling motivation 

for the development of shadow cure in photopolymerizations.  The mobility of 

active centers can overcome many of the current limitations to the use of 

photopolymerization in some industries.  This research addresses this need, 

and provides an increased fundamental understanding of the diffusional and 

kinetic mechanisms of shadow cure.  The hypothesis of this research is that 

the mobility of active centers can lead to polymerization in regions of a 

photopolymer that that have not been illuminated. 

The broad objective of this research is to utilize a fundamental set of 

differential equations that govern the light intensity gradient and 

photoinitiator concentration gradient for polychromatic illumination to 

describe the spatial and temporal evolution of active center concentration 

profiles generated during illumination.  These profiles of the active center 

concentrations are then used to characterize the reactive diffusion process 

which takes place during the post-illumination period.  Consequently, a 

fundamental understanding of the active center migration into unilluminated 

regions is attained. 

This broad objective is achieved by accomplishing the following three 

specific goals: 

1)  to demonstrate the generation and mobility of cationic active 

centers in systems pigmented with carbon black, specifically to 

understand the post-illumination diffusion of the active centers to 

depths greater than the light penetrates, and to support with 
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experimental results the idea that polymerization can occur in regions 

that have not been illuminated. 

2)  to illustrate the effects of shadow cure, or post-illumination 

diffusion, of cationic active centers in multiple spatial dimensions for 

the purpose of utilizing shadow cure for systems with complex 

geometries, again supporting with experimental results the hypothesis 

that shadow cure can result in polymerization of unilluminated 

regions. 

3) to investigate the potential of free-radical shadow cure, specifically 

the ability of free-radical active centers to migrate post-illumination 

over the short dimensional scales required for some microelectronics 

applications, resulting in free-radical polymerization of unilluminated 

regions. 
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CHAPTER 3  

CATIONIC PHOTOPOLYMERIZATION OF SYSTEMS 

PIGMENTED WITH CARBON BLACK NANOPARTICLES 

3.1 Introduction 

Photopolymerization is well established as an effective method for 

curing transparent films.  However, the need for pigmented coatings has 

limited the use of photopolymerization in many applications.  Pigments are 

often added to coatings to provide color or to hide the surface of the substrate.  

Photopolymerization reactions are hindered by pigments and fillers, which 

directly compete with the photoinitiator for incident photons [28].  This 

results in increased light attenuation in pigmented coatings, especially with 

increasing film thickness.  For this reason, free-radical photopolymerizations 

of pigmented coatings are typically limited to very thin applications, such as 

inks (~10 µm), with the thickest systems approaching 100 µm [29,30]. 

Unlike free-radicals, cationic active centers are not inhibited by oxygen 

and are essentially non-terminating, and therefore have been shown to 

remain active long after irradiation has ceased and may lead to further 

polymerization in the illuminated region (dark cure).  Dark cure in cationic 

photopolymerizations of epoxide monomers has been characterized by a 

number of investigators [24-26].  Due to their long lifetimes and tendency to 

diffuse, cationic active centers can also be responsible for “shadow cure” in 

regions that have never been illuminated such as unexposed depths and 

regions shaded by opaque constituents or fillers.  In a recent contribution, 

Ficek et al. [27] characterized the diffusion of the cationic active centers in 

photopolymerizations of cycloaliphatic epoxides, and demonstrated that the 

cure can continue for several hours to extend deep below the illuminated 
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surface in unpigmented systems.  Sangermano and collaborators [17,21] 

recently reported hybrid cationic photopolymerization/sol-gel reaction 

processes to produce coatings containing nano-scale inorganic domains.  In 

this clever approach, the inorganic domains are produced in situ, after the 

UV curing step, and the investigators demonstrated that coatings with 

desirable scratch resistance, toughness, clarity, and refractive index could be 

obtained.   

This contribution provides a theoretical and experimental 

investigation of cationic photopolymerizations of epoxide coatings pigmented 

with carbon black nanoparticles.  The fundamental differential equations 

describing the polychromatic photoinitiation process [31,32] are solved to 

obtain profiles of the concentration of active centers as a function of time and 

depth.  Here the differential reaction/diffusion equations which describe the 

consumption of photoinitiator and production of active centers are coupled to 

the differential absorption equation which accounts for the polychromatic 

absorption by all system components, including the pigment.  During the 

illumination period the active centers are preferentially generated at the 

surface to produce a concentration gradient that leads to diffusion into the 

regions of unexposed monomer.  Using the active center concentration 

gradient at the end of the illumination period as the initial condition for the 

differential diffusion equation allows the active center concentration profile 

to be determined long after the illumination has ceased.  Coupling these 

concentration profiles with the propagation rate equation allows the cure 

time, or time for macroscopic property development, to be predicted for a 

required conversion.  In this manner, experimental cure times for carbon 

black pigmented coatings are compared with theoretical predictions of cure 

time. 
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3.2 Experimental 

3.2.1 Materials 

The cationically polymerizable monomer 3,4-epoxy-cyclohexylmethanyl 

3,4-epoxy-cyclohexanecarboxylate (EEC, Sigma Aldrich) was used in these 

experiments.  The photoinitiator used in these experiments was 

(tolycumyl)iodonium tetrakis (pentafluorophenyl) borate (IPB, Secant 

Chemicals).  The carbon black pigment studied was CB-35 (NIPex 35, 

Degussa Engineered Carbons, LP).  Methanol and propylene carbonate 

solvents were used for UV/Visible spectroscopy. 

3.2.2 Pigment Dispersion and Size Characterization 

The carbon black used in this study is a commercial furnace black 

designed for chemically prepared toner applications because of its ease of 

dispersion.  Furnace blacks generally exhibit a hydrophobic, non-polar, basic 

character.  Propylene carbonate was selected as a solvent for carbon black 

spectral measurements because it is a polar aprotic solvent in which the 

pigment exhibits good dispersion.  The size and monodispersity of CB-35 

carbon black in propylene carbonate was characterized using dynamic light 

scattering (DLS).  Experiments were carried out with a DynaPro 99P 

instrument (Protein Solutions) equipped with a 1 cm pathlength cell.  

Samples were analyzed using the Dynamics software provided with the 

instrument.   

3.2.3 UV/Visible Spectroscopy 

The absorbance spectra for the monomer, photoinitiator, photolysis 

products, and pigments were determined in one nanometer increments using 

an 8453 UV-Visible spectrophotometer (Agilent Technologies).  For the 



www.manaraa.com

14 
 

monomer and photoinitiator, the spectra were obtained for dilute solutions 

(10-2 M and 10-3 M respectively) in methanol placed in an air-tight, quartz cell 

to prevent any changes in concentration due to evaporation of the solvent.  To 

obtain the absorbance spectra after photolysis, the photoinitiator samples 

were illuminated with a 200 Watt Hg-Xe arc lamp (Oriel Light Sources) until 

there was no change in the absorbance spectrum.  For carbon black spectra, 

the pigment was dispersed in propylene carbonate (~1 g/L) by mixing on a 

stir plate for at least 24 hours prior to analysis. 

3.2.4 Determination of Diffusion Coefficient 

A method previously documented for determining the diffusion 

coeffiecient for cationic active centers in cycloaliphatic diepoxide systems [27] 

was used to measure distance over which shadow cure occurred for a carbon 

black pigmented system, and to calculate the effective diffusion coefficient.  

Solutions containing 98 wt% EEC, 1 wt% IPB, and 1 wt% pigment were 

mixed together for 24 hours in dark conditions. The monomer mixture was 

placed in disposable 4.5 ml polystyrene cuvettes, which were chosen because 

they are transparent to the wavelengths of interest and readily dissolve in a 

number of solvents.  Each cuvette, filled to a level of 3 cm with monomer 

solution, was illuminated from underneath with the light from the 200 W Hg-

Xe arc lamp for 5 minutes.  Since the density of the polymer is higher than 

that of monomer, illumination from below avoids polymerization-induced 

convection or mixing.  After exposure, the system was maintained at 50 °C for 

the prescribed shadow cure time.  At the prescribed shadow cure time, the 

sample was placed in THF to dissolve the cuvette and monomer from the 

uncured region of the sample. The insoluble polymer matrix was washed with 

acetone to remove any remaining THF and excess monomer.  The polymer 
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sample was dried thoroughly and its weight was recorded.  The polymerized 

thickness was determined by dividing the weight of the polymer sample by 

the product of the polymer density and the area of illuminated surface (the 

cross-sectional area of the cuvette, 1 cm2).  At each shadow cure time, an 

unilluminated control sample was prepared to verify that thermally-induced 

polymerization did not occur. 

3.2.5 Raman Spectroscopy for Characterization 
of the Propagation Rate Constant 

The propagation rate constant for cationic polymerization of the 

cycloaliphatic diepoxide used in this study was determined independently for 

the neat monomer using Raman Spectroscopy.  Raman spectra were collected 

using a holographic fiber-coupled stretch probehead (Mark II, Kaiser Optical 

Systems, Inc.) attached to a modular research Raman spectrograph (HoloLab 

5000R, Kaiser Optical Systems, Inc).  A sample containing EEC monomer 

with photoinitiator was placed inside a sealed 1 mm ID quartz capillary tube.  

A 200 mW 785 nm near-infrared laser through a 10x non-contact sampling 

objective with 0.8 cm working distance was directed into the sample to induce 

the Raman scattering effect.  Photopolymerization was initiated by 

simultaneously illuminating the sample with a 100 W high pressure mercury 

lamp (Acticure Ultraviolet/Visible Spot Cure System, EXFO Photonic 

Solutions, Inc. ) filtered for 250 – 450 nm wavelengths.  The Raman peak at 

790 cm-1 was used to determine the epoxide conversion [33]. The effective 

propagation rate constant, kp, was determined using a previously published 

procedure [34].  The value of kp for EEC was determined to be 0.1 L/mol-sec, 

which is consistent with literature reported kp values for ring-opening 

polymerizations [35]. 
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3.2.6 Photopolymerization of Coatings 

The time required for the CB-35 pigmented coatings to reach 

macroscopic property development was investigated over a range of pigment 

loadings and illumination times.  For these experiments, solutions containing 

96 - 99 wt% EEC, 1 wt% IPB, and 0-3 wt% pigment were mixed together for 

24 hours in dark conditions.  The solutions were then spread onto aluminum 

substrates using a draw bar to achieve the desired uniform coating thickness 

(40 or 80 µm).  The coated panels were then illuminated for various times, 

using a 200 W Hg-Xe arc lamp.  The output of the lamp was passed through a 

water filter to eliminate infrared light, resulting in an overall irradiance of 50 

mW/cm2.  The wavelength range of interest was determined to be 295-307 

nm, corresponding to the overlap between the photoinitiator absorbance 

spectrum and the lamp emission spectrum.  The irradiance in this range was 

determined to be 5 mW/cm2, measured using a calibrated miniature fiber 

optic spectrometer (USB4000, Ocean Optics, Inc.) The photopolymerization 

was carried out under atmospheric conditions and at room temperature.  

After exposure, the panels were stored at room temperature.  The cure time 

required for macroscopic property development was determined by 

characterizing the surface tack and the adhesion to the substrate at regular 

intervals.  Once full property development was achieved, the thickness of the 

coating was obtained by a micrometer (micro-TRI-gloss µ, BYK Gardner). 

3.3 Results and Discussion 

3.3.1 Photoinitiator, Photolysis Product, and Pigment 
Absorptivities 

A number of investigators have shown that free-radical photoinitiators 

typically exhibit significant photo-bleaching [36-38] since the absorption of 
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the photolysis products is lower than that of the original photoinitiator.  

Photobleaching is important for photo-curing of thick systems since it allows 

light to penetrate deeper beneath the illuminated surface upon production of 

active centers [39-43].  Photobleaching during cationic photopolymerizations 

has received considerably less attention in the literature, and the degree of 

photobleaching of most cationic photoinitiators has not been characterized.  

Table 3-1 shows the molar absorptivity as a function of the incident 

wavelength (for the wavelengths of interest in this study) for the both the 

original cationic photoinitiator (IPB) and the photolysis products.  This table 

illustrates that, although the IPB photoinitiator exhibits some 

photobleaching upon photolysis, the molar absorptivity of the photolysis 

products is significant (average 34% of the photoinitiator absorptivity). 

Table 3-1. Napierian molar absorptivities (L/mol-cm) 
for photoinitiator (εi) and photolysis products (εp) 

for incident wavelengths 

λ (nm) εi εp εp/εi 
295 2,736 1,046 0.38 
296 2,537 936 0.37 
297 2,352 839 0.36 
298 2,175 753 0.35 
299 2,005 677 0.34 
300 1,844 610 0.33 
301 1,688 549 0.33 
302 1,544 496 0.32 
303 1,409 450 0.32 
304 1,282 410 0.32 
305 1,164 373 0.32 
306 1,054 342 0.32 
307 954 315 0.33 
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The optical properties of the pigments play an important role for the 

potential photopolymerization of pigmented coatings.  In general, pigments 

may reduce light penetration by absorption, scattering or reflection of the 

incoming light, therefore the radiative flux in a pigmented sample can be 

characterized by accounting for these effects.  This has been accomplished for 

highly reflective pigments, such as titanium dioxide, by describing the 

specular and diffuse reflectance using a four-flux model [44].  In one study of 

Pigment Red 254, Jahn and Jung [45] found the reflectance contribution to be 

negligible for pigment particles smaller than 100 nm.  Similarly, for a matrix 

containing carbon black pigments, Tesfamichael et al. [46] found that the 

contribution of the reflectance was insignificant for incident wavelengths 

below 500 nm.  The system under investigation meets both of these criteria 

since the mean particle size is less than 30 nm and the initiating light falls in 

a narrow wavelength region where the UV photoinitiator absorption overlaps 

with the 200 W Hg-Xe arc lamp emission (295-308 nm). 

To confirm the particle size distribution of the carbon black 

nanoparticles used in this study, dilute solutions of CB-35 in propylene 

carbonate solvent were evaluated using DLS.  These results showed the 

samples to exhibit a monodisperse and unimodal distribution of particle 

sizes.  The DLS histogram shown in Figure 3.1 gives a mean hydrodynamic 

radius of 29.2 nm. 

These observations suggest that the reflectance and scattering effects 

can be neglected for the small, monodisperse carbon black particles used in 

this study.  To confirm that the absorption is linearly dependent upon the 

CB-35 pigment loading, the direct transmittance in the wavelength range of 

interest (295-308 nm) was measured as a function of the pigment mass 

concentration.  A plot of the transmittance at 300 nm as a function of CB-35 
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3.3.2 Determination of the Active Center 
Concentration Profiles Produced 
During Illumination 

An accurate description of the spatial photoinitiation profiles produced 

during the illumination step is necessary to predict the depth of cure in a 

pigmented system.  The evolution of the light intensity gradient and the 

corresponding active center concentration profiles were found using the 

following set of differential equations for polychromatic illumination, 

including diffusion of the initiator and photolysis products: 
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Here, z is the direction perpendicular to the illuminated surface, with 

z=0 at the illuminated edge.  The subscript j is an index with a different 

value for each wavelength of light under consideration; Ci(z,t) is the initiator 

molar concentration at depth z and time t; Cp(z,t) is the photolysis product 

molar concentration at depth z and time t; I(z,t) is the incident light intensity 

of a specific wavelength at depth z and time t with units of mW/cm2; εi is the 

initiator Napierian molar absorptivity at a specific wavelength with units of 

L/mole-cm; εp is the photolysis product Napierian molar absorptivity at a 

specific wavelength with units of L/mole-cm; aCB is the carbon black pigment 

Napierian absorptivity at a specific wavelength with units of L/g-cm; CCB is 

the carbon black pigment mass concentration in units of g/L; φi is the 

quantum yield of the initiator at a specific wavelength, defined as the fraction 

of absorbed photons that lead to fragmentation of the initiator; NA is 
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Avogadro’s number; h is Plank’s constant; v is the frequency of light in units 

of inverse seconds; Di is the diffusion coefficient of the initiator in units of 

cm2/sec; Dp is the diffusion coefficient of the photolysis products; and Am is 

the absorption coefficient of the monomer and the polymer repeat unit with 

units of 1/cm.  Note that the Napierian absorptivities are used because they 

are most natural for the differential version of the absorption equation 

(Equation 3).  The quantum yield for IPB is 0.7 and the diffusion coefficients 

are 1 x 10-7 cm2/sec [47]. 

For a polymerization system of thickness zmax which is illuminated at 

the planar surface in which z = 0, the following initial and boundary 

conditions apply [31,32]: 

(3.7)                         It)I(0,

(3.6)        zz and 0zat  0
z

C

(3.5)                        0(z,0)C
(3.4)                      C(z,0)C

o

max
pi,

p

oi

=

===
∂

∂

=
=

 

Equation 3.4 states that the initial initiator concentration, Co, is 

uniform throughout the depth of the sample.  Similarly, Equation 3.5 

indicates that the initial photolysis product concentration is zero throughout 

the sample.  Equation 3.6, the no-flux boundary condition, indicates that 

there is no transport of initiator or photolysis product across the illuminated 

surface or the opposite boundary (typically an interface with a substrate).  

Finally, Equation 3.7 states that the light intensity on the illuminated 

surface is constant and equal to the initial intensity, Io. 
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3.3.2.1 Active Center Concentration Profiles 
for Infinitely Thick Systems 

To demonstrate the effect of the carbon black pigment on the 

photoinitiation process, it is useful to examine simulation results for an 

infinitely thick system where zmax = ∞.  Simultaneous solution of Equations 

3.1-3.7 yields profiles of light intensity and initiator concentration as 

functions of depth at various instants in time for an infinitely thick system.  

Figure 3.3 contains plots of the light intensity as a function of depth for two 

different EEC systems: unpigmented (Figure 3.3a) and pigmented with 3 

wt% CB-35 (Figure 3.3b).  The figure illustrates that the presence of the 

carbon black has a marked effect on the initial light intensity gradient in the 

sample.  In the pigmented case, the light intensity drops to a value of 

essentially zero in less than 60 µm.  In contrast, for the unpigmented case the 

initial light intensity is still 75% of the incident value at a depth of 60 µm, 

and retains more than 10% at a depth of 500 µm.  The photobleaching 

described in Table 1 leads to the change in the gradient with increasing 

illumination time for the unpigmented system (Figure 3.3a), but is found to 

be negligible for the pigmented system (Figure 3.3b) due to the strong 

absorption by the pigment. 

Since the rate of consumption of the photoinitiator at a given depth 

increases with increasing total light intensity (as described in Equation 3.1), 

the initial rate is highest at the illuminated surface, and is zero anywhere in 

which the total light intensity is zero.  Therefore, a photoinitiator 

concentration gradient will be established immediately upon illumination, 

and will evolve with time in a manner described by the simultaneous solution 

of Equations 3.1-3.7.   



www.manaraa.com

23 
 

 

Figure 3.3. Profiles of the initial total light intensity summed over initiating 
wavelengths (295-308 nm)  a) no pigment, b) 3 wt% CB-35.  
Monomer: EEC, Initiator: 1 wt% IPB. 

For example, Figure 3.4 shows profiles of the photoinitiator 

concentration as a function of depth with increasing illumination time for the 

cationic photopolymer system with and without 3 wt% CB-35 pigment.  These 

results illustrate that in the case of the pigmented system (Figure 3.4b), the 

photoinitiator is depleted rapidly at the surface of the sample where the light 

intensity is highest, but the photoinitiation reaction does not extend much 

beneath the surface due to the light attenuation caused by the strongly 

absorbing pigment.   As a result, the pigmented system exhibits sharp 

gradients in both the light intensity (Fig. 3.3b) and the initiator 

concentration (Figure 3.4b).  Compared to the unpigmented system (Figure 

3.4a), the steep concentration gradient results in a stronger driving force for 

diffusion of the initiator and photolysis products, therefore the diffusive 

contributions during illumination are much more important for the 

pigmented systems.  Diffusion of the photoinitiator during the illumination 
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period is responsible for the concentration change that takes place at depths 

where the light intensity is zero (depths greater than 60 µm). 

Figure 3.4. Profiles of photoinitiator concentration after 2 minutes 
illumination.  a) no pigment, b) 3 wt% CB-35.  Monomer: EEC, 
Initiator: 1 wt% IPB. 

The local rate of active center generation is equal to the product of the 

local initiator concentration and the local light intensity summed over the 

initiating wavelengths [31,32].  Since the cationic active centers are 

essentially non-terminating, and each photoinitiator molecule leads to the 

formation of a single active center molecule, the cationic active center 

concentration, CAC, at a given depth, z, and time, t, can be determined from 

the integrated form of the rate equation: 

dttzItzCtzC ijjj
j

t

iAC εφ)],([),(),(
0

∑∫=  (3.8)  

Figure 3.5 shows the evolution of the active center concentration 

profiles during the 5 minute illumination time for two different pigment 

loadings.  The 3 wt% pigmented system in Figure 3.5b shows the active 

center concentration profiles within the first 300 µm of an infinitely thick 
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system, resulting from the light intensity shown in Figure 3.3b and the 

photoinitiator concentration shown in Figure 3.4b.  These results are 

compared with the active center concentration profiles for a 2 wt% pigmented 

system shown in Fig. 3.5a.  The concentration of active centers generated at 

the illuminated surface of the sample is slightly higher for the 2 wt% system.  

The concentration drops off quickly to a value of zero within the first ~200 µm 

of sample depth for the 3 wt% pigmented system. 

Figure 3.5. Profiles of active center concentration for infinite thickness during 
5 minutes of illumination.  a) 2 wt% CB-35, b) 3 wt% CB-35.  
Monomer: EEC, Initiator: 1 wt% IPB. 

3.3.2.2 Active Center Concentration Profiles 
for Pigmented Coatings 

For coatings of a finite thickness, the active center concentration 

profiles predicted during the illumination period differ from those for an 

infinitely thick system due to the no-flux boundary condition at the interface 

between the coating and the substrate.  Figure 3.6 shows the active center 

concentration profiles throughout the depth of an 80 µm thick coating during 

5 minutes of illumination for 2 wt% CB-35 (Figure 3.6a) and 3 wt% CB-35 

(Figure 3.6b). 
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Figure 3.6.  Profiles of active center concentration for 80 µm thick coatings 
during 5 minutes of illumination.  a) 2 wt% CB-35, b) 3 wt% CB-
35.  Monomer: EEC, Initiator: 1 wt% IPB. 

In contrast to the infinitely thick case (Figure 3.5), the concentration 

gradients for the 80 µm coatings are not as steep at a given illumination 

time.  This arises from the fact that the diffusion of the active centers is 

confined to the finite thickness of the coating, therefore the concentration at 

the interface increases more rapidly with time.  For example, the active 

center concentration at the bottom of the 80 µm thick 2 wt% pigmented 

coating after 5 minutes of illumination is 0.012 mol/L (from Figure 3.6a), 

whereas the value at the position of 80 µm depth in the infinitely thick 

system (Figure 3.5a) is 0.005 mol/L.  The comparison between Figures 3.6a 

and 3.6b reveals the effect of the pigment loading on the active center 

concentration profiles.  An increased pigment loading decreases the active 

center concentration at a given location and time, due to the effect of the 

pigment on the light intensity gradient.   



www.manaraa.com

27 
 

The effect of the interface no-flux boundary condition on resulting 

active center profile becomes more pronounced as the coating thickness is 

reduced, as illustrated in Figure 3.7.   

 

Figure 3.7. Profiles of active center concentration for 2 wt% CB-35 pigmented 
coatings ranging from 40 µm to infinitely thick. a) 2 minutes of 
illumination, b) 5 minutes of illumination.  Monomer: EEC, 
Initiator: 1 wt% IPB. 

Figures 3.7a and 3.7b show the active center concentration profiles at specific 

illumination times (2 minutes and 5 minutes respectively) for coating 

thicknesses ranging from 40 µm to infinitely thick, for 2 wt% CB-35.  The 

figure illustrates that the active center concentration profiles for the 

infinitely thick systems decrease relatively sharply and reach a value of zero 

concentration at a depth of 140 µm for a two minute illumination time and 

220 µm for an illumination time of five minutes.  The profiles for the 

infinitely thick case provide an asymptotic limit for the coatings of finite 

thickness.  Specifically, the active center concentration profiles approach 

those of the infinitely thick case as the coating thickness is increased or the 

illumination time is decreased.  The figure also illustrates that the active 

center concentration profile becomes more uniform throughout the thickness 
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of the coating as the thickness is decreased or the illumination time is 

increased.  These trends arise from the fact that the diffusion of the active 

centers is confined to the finite thickness of the coating.  In the case of the 40 

µm thick coating, the concentration is nearly uniform throughout the 

thickness of the coating after 5 minutes of illumination. 

3.3.3 Post-illumination Diffusion of Active 
Centers in Pigmented Coatings 

 During the illumination period, active center profiles decrease 

sharply with depth, resulting in a concentration gradient and therefore a 

driving force for diffusion.  Diffusion of the active centers during the post-

illumination period is described by Fick’s Second Law 
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where CAC corresponds to the concentration of active centers, and DAC is the 

diffusion coefficient of active centers in cm2/sec.  The initial condition for the 

active center concentration as a function of depth is the profile obtained by 

applying Equation 8 at the end of the illumination period for each desired 

depth increment.  In addition, the no-flux boundary condition indicates that 

there is no transport of initiator or photolysis product across the illuminated 

surface (z = 0) or the substrate boundary (z = zmax). 
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The diffusion coefficient for active centers generated by the IPB 

photoinitiator in the cycloaliphatic diepoxide containing 1 wt% carbon black 

was determined using the method described in the experimental section. 

Experimental cure depths for a 1 wt% carbon black pigmented system are 

shown in Figure 3.8.  The effective diffusion coefficient was determined by 
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fitting this data to the diffusion equation, and was found to be 1 x 10-7 

cm2/sec, which is a reasonable value for reactive diffusion in which the active 

centers migrate by propagating with unreacted monomers [27].  Reactive 

diffusion has been identified as the primary mode for active center mobility 

in free-radical polymerizations of multifunctional acrylates [48] and cationic 

polymerizations of divinyl ethers [34,49]. 

 

Figure 3.8. Shadow cure distance versus square root of time for a 1 wt% 
carbon black pigmented system.  Monomer: EEC, Initiator: 1 wt% 
IPB, Exposure Time: 5 min. 

Numerical solution of Equations 3.9 and 3.10 yields profiles of the active 

center concentration diffusing with increasing post-illumination time into a 

pigmented coating of finite thickness.  Figures 3.9a and 3.9b show the active 

center profiles for an 80 µm coating pigmented with 2 wt% and 3 wt% CB-35, 

respectively, with increasing post-illumination time.  As shown previously in 

Figure 3.6, the active center concentration profile exhibits a gradient at the 

end of the illumination period.  Figure 3.9 indicates that the active center 
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concentration becomes uniform throughout the thickness of the 80 µm coating 

within 10 minutes post-illumination due to diffusion of the active centers.  

The comparison between Figures 3.9a and 3.9b illustrates that the final 

uniform active center concentration increases as the pigment loading is 

decreased since a higher fraction of the photoinitiator undergoes photolysis as 

the competitive absorption by the pigment is decreased. 

Figure 3.9. Active center concentration profiles diffusing post-illumination in 
an 80 µm thick pigmented coating.  a) 2 wt% CB-35, b) 3 wt% CB-
35.  Monomer: EEC, Initiator: 1 wt% IPB, Exposure time: 5 min. 

Shorter illumination times were used to demonstrate the post-

illumination diffusion of active centers in a 40 µm pigmented coating.  

According to the results shown previously in Figure 3.7, the active center 

concentration profile was nearly uniform throughout the thickness of the 

coating after 5 minutes of illumination.  But after only 3 minutes of 

illumination, the active centers produced near the surface of the coating were 

able to diffuse post-illumination, as shown in Figures 3.10a and 3.10b, for 2 

wt% and 3 wt% pigment loadings, respectively.   
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Figure 3.10. Active center concentration profiles diffusing post-illumination 
in pigmented coating (40 µm thick).  a) 2 wt% CB-35, b) 3 wt% 
CB-35.  Monomer: EEC, Initiator: 1 wt% IPB, Exposure time: 3 
min. 

For the thinner 40 µm coatings, the active centers can only diffuse over half 

the distance.  The concentration profile therefore becomes uniform within 

half the time (5 minutes post-illumination) compared with the 80 µm coatings 

in Figure 3.6 (10 minutes post-illumination). 

3.3.4 Kinetic Analysis for Prediction of Cure Times 

In pigmented coating applications, the cure time required to reach 

macroscopic property development (tmpd) is especially important since it 

determines when a coated substrate may undergo additional process steps 

that involve contact with the surface.  At this time, the exposed surface of the 

coating must be tack-free, and the cure on the bottom of the coating, where it 

interfaces with the substrate, must be sufficient to ensure effective adhesion.  

For pigmented systems polymerized cationically, the time required to achieve 
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cure at the bottom determines the tmpd, since there is no oxygen inhibition at 

the exposed surface and the light intensity is the lowest at the bottom of the 

sample.  For this reason, a conservative criterion of a 35% epoxide conversion 

at the bottom interface was established to predict the tmpd.  The tmpd was 

estimated by obtaining the active center concentration profiles at the bottom 

interface using Equations 3.8 (for the illumination period) and 3.9 (for the 

shadow cure period) and entering these profiles into the integrated form of 

the polymerization rate equation for cationic polymerization, shown below. 

  (3.11) 

where tmpd is the cure time required to reach macroscopic property 

development, kp is the propagation rate constant, and mf/mi is the ratio of 

final monomer concentration to initial monomer concentration.   

Figure 3.11 contains plots of the active center concentration at the 

bottom interface as a function of time for 80 µm EEC coatings containing 

three different pigment loadings.  In this figure, the system is illuminated for 

the first five minutes (active center concentration given by Equation 3.8), 

while the final ten minutes correspond to shadow cure (the active center 

concentration is determined by solving Equations 3.9 and 3.10).  The figure 

illustrates that the active center concentration reaches a plateau when the 

active center concentration becomes uniform throughout the thickness of the 

coating.  Increasing the pigment concentration leads to a reduced active 

center concentration at the bottom interface at any given time, including the 

plateau value when the active center concentration is uniform throughout the 

depth.  As explained previously, this trend arises from the competitive 

absorption by the carbon black pigment which reduces the total number of 

active centers created during illumination.  
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Figure 3.11. Active center profiles for various CB loadings at bottom interface 
of 80 µm thick coating.  Monomer: EEC, Initiator: 1 wt% IPB, 
Pigment: 1-3 wt% CB-35, Exposure Time: 5 min. 

The data shown in Figure 3.11 were integrated numerically to 

estimate the post-illumination cure time (tmpd) by applying Equation 3.11, 

using the independently measured propagation rate constant described in the 

experimental section.  However, Equation 3.11 is only valid if the carbon 

black neither catalyzes nor inhibits the reaction.  Depending upon the 

method of preparation and surface treatment, the surface electronegativity of 

the pigment can vary from strongly acidic to strongly basic.  Based upon a 

standard test for characterizing the acidity or basicity of pigments, the CB-35 

pigment used in this study was reported to be basic (a pH of 9 from the ISO 

787-9 test method was reported by the manufacturer [50]).  For cationic 

photopolymerizations of pigmented coatings, a basic carbon black is 

preferable to ensure that the system has a desirable shelf-life.  Formulations 
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used in these experiments were stable over several months.  However, due to 

this basicity, the CB-35 carbon black acts as an inhibitor to the cationic 

photoinitiator in addition to absorbing the initiating light.  Therefore, the 

active center concentration used in Equation 11 was taken to be the 

generated concentration shown in Figure 3.11 minus an inhibited active 

center concentration which is proportional to the carbon black loading.  The 

value of the inhibited concentration was found to be 0.003 mol/L for each 1 

wt% loading of carbon black. 

Figure 3.12 shows a comparison between the experimentally 

determined tmpd values and the theoretical values calculated using the 

procedure described above.  In this figure, each data point corresponds to at 

least three independent experiments with the standard deviation indicated 

by the error bars.  Recall that the tmpd corresponds to the time after the 

illumination has ceased during which the long-lived active centers continue 

to react and diffuse into the thickness of the coating.  Figure 3.12 indicates 

good agreement between the experimental and theoretical values of the post-

illumination time required for macroscopic property development, indicating 

that the criterion of 35% cure at the bottom of the sample is reasonable.  In 

addition, the data illustrate some interesting effects of illumination time and 

coating thickness.  The illumination time is an important process variable 

since it determines the number of active centers produced, and therefore 

available for diffusion and cure.  For this reason, the tmpd decreases with 

increasing illumination time, especially at short illumination times.  As the 

coating thickness is increased, the required cure time increases significantly 

at a given illumination time. 
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Figure 3.12. Comparison of predicted with experimental cure times (tmpd) at 
bottom interface of 40 µm and 80 µm thick coatings for varying 
illumination times.  Monomer: EEC, Initiator: 1 wt% IPB, 
Pigment: 2 wt% CB-35. 

The time for macroscopic property development is of significant 

practical importance since it corresponds to the earliest time in which the 

polymerized ink or coating can be subjected to further processing steps 

without risk of damaging the surface or losing adhesion to the substrate.  

Using the analytical approach described above, the effects of the illumination 

time and the pigment loading on the post-illumination tmpd were investigated 

more thoroughly. Figure 3.13 contains plots of the tmpd as a function of the 

illumination time for three different pigment loadings (1, 2, and 3 wt.%) and 

two different thicknesses (40 and 80 µm in Figure 3.13a and b respectively).  

Recall that active centers are produced (and polymerization occurs) during 

the illumination time, and that the long-lived active centers continue to 
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propagate after the illumination has ceased.  The post-illumination tmpd will 

have a value of zero if the system cures during the illumination time (for 

example, the 1 wt% pigment, 40 µm, five minute illumination time case). For 

this reason, all of the plots will approach a value of zero as the illumination 

time is increased.  If the illumination time is too short to produce enough 

active centers, the post-illumination tmpd will go to infinity.  The threshold 

illumination time required to cure the coating increases with increasing 

pigment loading due to the inhibitory effect of the basic carbon black 

pigment.  Comparison between Fig. 13a and b shows that the thicker coatings 

require longer illumination times for a given post-illumination tmpd. 

 

Figure 3.13. Predicted cure times (tmpd) at bottom interface of coatings 
pigmented with 1-3 wt% CB-35.  a) 40 µm thickness, b) 80 µm 
thickness.  Monomer: EEC, Initiator: 1 wt% IPB. 

3.4 Conclusions 

In this contribution, the ability of long-lived cationic active centers to 

effectively cure coatings pigmented with carbon black has been investigated.  

The slightly basic, monodisperse carbon black pigment with a mean 

hydrodynamic radius of 29.2 nm used in these studies was found to act as a 
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mild inhibitor of the cationic photopolymerization.  The light intensity 

gradient and photoinitiator concentration gradient for polychromatic 

illumination were determined for the pigmented system.  The strong 

absorption by the carbon black resulted in sharp gradients in the pigmented 

systems.  Consequently, the photoinitiator diffusion during the illumination 

period was found to have a marked effect on the resulting active center 

concentration profiles.  Analysis of the active center reactive diffusion during 

the post-illumination period revealed that migration of the active centers 

leads to cure beyond the illuminated depth.  The propagation rate equation 

coupled with the active center concentration profiles yielded theoretical cure 

times for the pigmented coatings.  The coating thickness and pigment loading 

were found to be important variables in the time required for macroscopic 

property development.  The long lifetimes and mobility of cationic active 

centers result in effective photopolymerization of carbon black pigmented 

coatings, and this comprehensive approach could be applied to other types of 

pigmented systems. 
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CHAPTER 4  

CATIONIC ACTIVE CENTER MOBILITY IN 

PHOTOPOLYMERIZATION SYSTEMS 

WITH COMPLEX GEOMETRIES 

4.1 Introduction 

Photopolymerization is becoming a state-of-the-art technology for 

curing coatings on two-dimensional substrates.  However, when the need 

arises for coating complex, three-dimensional objects, traditional 

photopolymerization suffers several disadvantages.  Photopolymerizations 

are typically dependent upon the generation of extremely short-lived free-

radicals that are sensitive to termination by oxygen.  And since the free-

radical photopolymerization reaction proceeds only in the presence of UV 

irradiation, the reaction terminates when the UV irradiation ceases.  In order 

to successfully use free-radical photopolymerization for coating a three-

dimensional substrate, such as an automobile body, first, the environment 

would need to be made inert to prevent oxygen inhibition.  Secondly, 

complete irradiation of the entire substrate surface would be required, 

including recessed or shaded regions of the three-dimensional object.  For 

these reasons, free-radical photopolymerizations fail to provide a practical 

and economical method for coating surfaces with irregular or intricate 

shapes. 

Some of the methods being developed to overcome these problems for 

curing coatings on three-dimensional objects include plasma curing [18], 

which involves placing the coated substrate effectively within the light 

source; dual-cure systems [19-21], which require simultaneous thermal and 

photochemical curing mechanisms; and robotic UV curing [22], which uses 
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mechanical means of directing irradiation into recessed or shaded regions of 

the substrate.  In this chapter, the use of cationic photopolymerization for 

multi-dimensional cure will be investigated.  Cationic photopolymerization is 

an alternative to free-radical photopolymerization offering several unique 

advantages, especially for use in curing coatings on substrates with complex 

geometries.  The cationic active centers generated in this type of 

photopolymerization exhibit extremely long lifetimes.  They are not sensitive 

to free-radical scavengers, such as oxygen, and do not terminate by a radical-

radical termination mechanisms.  The long-lived cationic active center 

lifetimes can result in photopolymerization reactions that proceed long after 

irradiation has ceased, until the monomer is consumed or the active centers 

are entrapped in the polymer matrix. 

Several investigators have shown cationic active centers to lead to 

dark cure, or post-polymerization, especially in the types of epoxide 

monomers used for cationic photopolymerization [24-26].  Due to their long 

lifetimes and tendency to diffuse, cationic active centers can also be 

responsible for a process known as shadow cure, or cure in regions that have 

never been illuminated [27].  The mobility of the cationic active centers 

facilitates cationic cure in recessed or shadow areas of a substrate that have 

not been directly exposed to irradiation.  

This chapter provides a theoretical and experimental investigation of 

shadow cure in multiple spatial dimensions in cationically photopolymerized 

systems. The fundamental differential equations describing the poly-

chromatic photoinitiation process are solved to obtain profiles of the active 

center concentration as a function of time and depth in the illuminated 

regions of the coating.  During the illumination period, the active centers are 

preferentially generated at the surface to produce a sharp concentration 
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gradient that provides a driving force for diffusion into regions of unexposed 

monomer.  Using the active center concentration profile at the end of the 

illumination period as the initial condition for the differential diffusion 

equation allows the spatial evolution of the active centers to be determined 

after the illumination has ceased.  First, this analysis is used to describe the 

cationic active center concentration profiles in two spatial dimensions: the 

direction of the illuminating light, as well as a direction perpendicular to the 

light source.  Second, photopolymerizations of cationically polymerizable 

monomer coatings are performed, with a portion of a two-dimensional 

substrate shaded from the initiating light.  The coatings are shown to shadow 

cure in the shaded region, and experimental measurements are compared 

with theoretical predictions of cure distance by coupling the post-illumination 

diffusion analysis with the propagation rate equation.  Finally, a novel 

method is presented in which cationic shadow cure is utilized to cure coatings 

with multiple layers using a single illumination step.  The results of this 

research show that photopolymerization of systems with complex geometries 

can be made possible by the mobility of cationic active centers.   

4.2 Shadow Cure in Two Spatial Dimensions 

4.2.1 Governing Equations 

For a photopolymerization system of rectangular cross-section subject 

to uniform polychromatic illumination normal to the top surface, the set of 

differential equations which govern the evolution of the light intensity 

gradient and initiator concentration gradient for polychromatic illumination 

[31,32] are shown below: 
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Here, the subscript j is an index with a different value for each wavelength of 

light under consideration; Ci(z,t) is the initiator molar concentration at depth 

z and time t; Cp(z,t) is the photolysis product molar concentration at depth z 

and time t; I(z,t) is the incident light intensity of a specific wavelength at 

depth z and time t with units of energy/(area*time); εi is the initiator 

Napierian molar absorptivity of a specific wavelength with units of 

volume/(length*mole); εp is the photolysis product Napierian molar 

absorptivity of a specific wavelength with units of volume/(length*mole); φi is 

the quantum yield of the initiator at a specific wavelength, defined as the 

fraction of absorbed photons that lead to fragmentation of the initiator; NA is 

Avogadro’s number; h is Plank’s constant; v is the frequency of light in units 

of inverse seconds; Di is the diffusion coefficient of the initiator in units of 

length2/time; Dp is the diffusion coefficient of the photolysis products; and Am 

is the absorption coefficient of the monomer and the polymer repeat unit with 

units of inverse length.  Note that this is the Napierian molar absorptivity 

because it is most natural for the differential version of the absorption 

equation (Equation 4.3).  

For a photopolymerization system of thickness zmax which is 

illuminated at the planar surface where z = 0, the following initial and 

boundary conditions apply: 
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Equation 4.4 states that the initial initiator concentration, C0, is uniform 

throughout the depth of the sample. Similarly, equation 4.5 indicates that the 

initial photolysis product concentration is zero.  Equation 4.6, the no-flux 

boundary condition, indicates that there is no transport of initiator or 

photolysis product across the illuminated surface or the opposite boundary 

(typically an interface with a substrate).  Finally, Equation 4.7 states that the 

light intensity on the illuminated surface is constant and equal to the initial 

intensity, Io. 

The solution to this set of equations provides detailed information 

regarding the time-evolution of the light intensity gradient and the initiator 

concentration gradient.  For an accurate description of initiation with 

polychromatic illumination, the light intensity gradient at each incident 

wavelength must be individually described.  As shown in equation 4.3, the 

intensity of an individual wavelength is attenuated by absorption of the 

initiator, monomer and polymer repeat units, and the photolysis product.  

Since the local initiator concentration depends upon all of the incident 

wavelengths, and the local light intensity of each wavelength depends upon 

the initiator concentration, the time-evolution of all of the light intensities 

are coupled to one another, and therefore the complete set of differential 

equations must be solved simultaneously.  Unlike the previous chapter where 

the photoinitiator diffusion was found to be important for highly pigmented 

systems, in transparent systems the diffusion effects have been shown to be 
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negligible for relatively low initiator concentrations of photobleaching 

initiators.  Therefore the diffusion terms in Equations 4.1 and 4.2 were 

neglected for the purposes of this chapter. 

The local rate of active center generation is equal to the product of the 

local initiator concentration and the local light intensity summed over the 

initiating wavelengths.  Since the cationic active centers are essentially non-

terminating, and each photoinitiator molecule leads to the formation of a 

single active center molecule, the cationic active center concentration, CAC, at 

a given depth, z, and time, t, can be determined from the integrated form of 

the rate equation: 
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In this manner, active center concentration profiles as a function of 

time and depth are determined during the illumination period.  These 

resulting active center concentration profiles can then be used as an initial 

condition for determining the mobility of active centers during the post-

illumination period.  Post-illumination diffusion of the active centers in one 

spatial dimension (the direction of the illuminating light) during the post-

illumination period is described by Fick’s Second Law: 
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where CAC corresponds to the concentration of active centers, and DAC is the 

diffusion coefficient of active centers in cm2/sec.  The initial condition for the 

active center concentration as a function of depth is the profile obtained by 

applying Equation 4.8 at the end of the illumination period for each desired 

depth increment.  In addition, the no-flux boundary condition indicates that 
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there is no transport of initiator or photolysis product across the illuminated 

surface (z = 0) or the substrate boundary (z = zmax). 
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Post-illumination diffusion of cationic active centers into a second 

spatial dimension (both in the direction of the illuminating light and in a 

perpendicular direction) can be described using the following form of Fick’s 

law in two spatial dimensions: 
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In this equation, x represents the direction perpendicular to the 

illuminating light, or the width of the sample.  CAC(x,z,t) is the active center 

molar concentration at depth z, width x, and time t;  and DAC is the diffusion 

coefficient of the active center in units of cm2/sec.  Again, the initial condition 

for this equation is the active center concentration profile obtained at the end 

of the illumination period.  Again, no flux boundary conditions were used for 

the illuminated surface (z = 0) and the edge of the sample width (x = 0): 

00
=

∂
=∂

z
,t)(x,zC AC    00

=
∂
=∂
x

,z,t)(xC AC                      (4.12)

 
4.2.2 Results and Discussion 

4.2.2.1 Active Center Concentration Profile 
Produced During Illumination 

Equations 4.1 – 4.8 were solved numerically using the method of finite 

differences to obtain a profile of the active center concentration as a function 

of depth during a five minute illumination period for a system containing the 

monomer EEC and 1 wt% of the photoinitiator IPB.  Molar absorptivity 
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values for the monomer, photoinitiator, and photolysis products were 

determined using methods described in Chapter 3.  Detailed spectral 

information for the light source used in this simulation study (200 W Hg/Xe 

arc lamp) was also obtained using methods described Chapter 3.  Figure 4.1 

shows the active center concentration profile obtained for the EEC/IPB 

system as a function of sample depth after 5 minutes of illumination with the 

Hg/Xe lamp.  This profile falls off rapidly with depth, and therefore exhibits a 

sharp gradient and a considerable driving force for diffusion.  Due to light 

attenuation by the photoinitiator, the active centers are only produced up to a 

depth of approximately 0.3 cm. 

 

Figure 4.1. Active center concentration profile at the end of the illumination 
period.  Monomer: EEC, Initiator: 1 wt% IPB, Exposure time: 5 
minutes. 

4.2.2.2 Post-illumination diffusion of cationic 
active centers 

It is convenient to consider the active center generation step and the 

active center diffusion step separately since each step is driven by different 

fundamental processes and occurs on different timescales.  In the one-
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dimensional case in which the concentration depends only upon depth, the 

diffusion and shadow cure occur in the same direction as the initial 

illumination, and the “shadow region” begins at the depth at which the light 

does not reach due to optical density of the system.  Therefore, the one 

dimensional shadow cure case is relevant for situations in which the light 

does not penetrate through the entire depth of the sample, for example thick 

systems and pigmented systems.  Note that for the EEC/IPB system 

described in Figure 4.1, the lower boundary condition (z = zmax) does not come 

into play for the sample thickness of 0.4 cm or greater, as shown in the figure. 

The effective shadow cure diffusion coefficient for active centers 

generated by the IPB photoinitiator in the cycloaliphatic diepoxide EEC was 

measured for thick systems in one spatial dimension using a previously 

described experimental protocol [27], and was determined to be 3 x 10-6 

cm2/sec, which is a reasonable value for reactive diffusion in which the active 

centers migrate by propagating with unreacted monomers.  Reactive diffusion 

has been identified as the primary mode for active center mobility [34, 48, 

49].  Numerical solution of the second-order partial differential  diffusion 

equations (Equations 4.9 and 4.10) yields profiles of the active center 

concentration diffusing with increasing post-illumination time, or shadow 

cure time, in the z-direction.  The resulting active center concentration 

profiles shown in Figure 4.2 demonstrate that there is a steep gradient at the 

end of the illumination period (the initial condition shown in Figure 4.1) 

which becomes more uniform throughout the thickness of the sample with 

increasing shadow cure time.  

This theoretical description of shadow cure can be extended to the 

multidimensional case in which diffusion can occur in directions 

perpendicular to the initial illumination.  Figure 4.3 shows a schematic of the 
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The configuration shown in Figure 4.3 is a simple geometry for a system with 

depth z and width x.  In this configuration, the illumination area of width xi 

is exposed to the light source, and the shadow area of width xs is masked. 

Profiles of the cationic active centers diffusing into the shadow region 

were determined by applying Equations 4.11 and 4.12, again to the initial 

condition shown in Figure 4.1.  Figures 4.4a through 4.4f illustrate the 

cationic active center concentration profiles obtained for the configuration 

illustrated in Figure 4.3.  The simulation results for this representative case 

of two-dimensional shadow cure illustrate that as the shadow cure time 

increases from zero to 50 minutes, the active center profile broadens and 

extends deeper into the sample in the z-direction, as it did in the one-

dimensional shadow cure case described in Figure 4.1.  In addition, Figure 

4.4 illustrates that active centers diffuse into the unilluminated region 

behind the mask in the x-direction with increasing post-illumination time.  

Figure 4.4a shows the vertical concentration gradient at the end of the 

illumination period between the illuminated region and the shaded region 

(where x = 0.4).  Since this concentration gradient is steeper at the interface 

between the illuminated and masked regions, the driving force for diffusion is 

higher in the x-direction than it is in the z-direction.  This method for 

describing shadow cure in multiple spatial dimensions can be applied to other 

configurations in which a region of the photopolymer is shaded from the 

illuminating light. 
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Figure 4.4. Active center concentration profiles in two spatial dimensions (x 
and z).  a) end of illumination period, b) 2.5 minutes shadow cure, 
c) 5 minutes, d) 10 minutes, e) 25 minutes, and f) 50 minutes.  
Monomer: EEC, Initiator: 1 wt% IPB, Exposure time: 5 minutes. 
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4.3.1 Materials and Experimental Methods 

The cationically polymerizable monomer 3,4-epoxy-cyclohexylmethanyl 

3,4-epoxy-cyclohexanecarboxylate (EEC, Sigma Aldrich) was used in these 

experiments.  The photoinitiator used was (tolycumyl) iodonium tetrakis 

(pentafluorophenyl) borate (IPB, Secant Chemicals).  Methanol solvent was 

used for UV/Visible spectroscopy.  The absorbance spectra for the monomer, 

photoinitiator, and photolysis products were determined in one nanometer 

increments using an 8453 UV-Visible spectrophotometer (Agilent 

Technologies).  For the monomer and photoinitiator, the spectra were 

obtained for dilute solutions (10-2 M and 10-3 M respectively) in methanol 

placed in an air-tight, quartz cell to prevent any changes in concentration due 

to evaporation of the solvent.  To obtain the absorbance spectra after 

photolysis, the photoinitiator samples were illuminated with a 200 Watt Hg-

Xe arc lamp (Oriel Light Sources) until there was no change in the 

absorbance spectrum.  Molar absorptivities before and after photolysis for 

IPB are reported in Chapter 3.  

Solutions containing 97 wt% EEC and 3 wt% IPB were mixed together 

for 24 hours in dark conditions.  The solutions were then spread evenly onto 3 

in. by 6 in. aluminum substrates (Q-Lab) using a draw bar to achieve the 

desired uniform coating thickness.  The coated panels were then covered with 

a coverplate to shade part of the panel, and irradiated using a LC6B bench 

top conveyer equipped with a F300S lamp system (Fusion UV Systems, Inc.).  

This lamp was equipped with a 13 mm “H” type bulb, and the irradiance was 

measured at the surface of the conveyer using UV integrating radiometer 

(EIT, Inc.) which gave an irradiance measurement in the UVB range of 1.9 

W/cm2.  The irradiation time was controlled by the speed of the conveyer.  

The photopolymerization was carried out under atmospheric conditions and 
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at room temperature.  The distance to which the coating cured within the 

shaded region was determined by characterizing the surface tack and the 

adhesion to the substrate at regular intervals using a dental probe.  The cure 

distance was then measured with calipers.  Once full property development 

was achieved, the thickness of the coating was obtained using a micrometer 

(micro-TRI-gloss µ, BYK Gardner). 

4.3.2 Results and Discussion 

4.3.2.1 Experimental Results 

Aluminum panels coated with 80 µm of the EEC/IPB mixture were 

irradiated using the experimental configuration described above.  The 

conveyor belt speed was set at 4 ft/min, giving an approximate illumination 

time of 3 sec. The photo in Figure 4.6 shows an example of the resulting 

shadow cure in the unilluminated region of a panel that progressively cured 

 

Figure 4.6. Photo showing illuminated region and shadow cure region of 
cured epoxide coating on aluminum panel. 
Monomer: EEC, Initiator: 3 wt% IPB, Exposure time: 3 sec. 
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illuminated region
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over 30 minutes post-illumination.  The edge of the illuminated region can be 

seen as a faint line corresponding to the black mark on the side of the panel 

which marked the position of the cover plate.  As shown in the photo, the 

photopolymer cured almost 2 cm into the shaded region of the coating after 

30 minutes. The shadow cure distance was measured as a function of post-

illumination time using the method described.  The numerical values 

recorded for shadow cure distance are shown in Figure 4.7.  The shadow cure 

progressed in a linear fashion for approximately 30 minutes (18 mm) after 

which time the shadow cure front stopped.  The unreacted monomer beyond 

the shadow cure front remained unpolymerized for days/weeks post-

illumination.   

 

Figure 4.7. Experimental measurements of shadow cure distance into shaded 
region over 30 minutes post-illumination time. 
Monomer: EEC, Initiator: 3 wt% IPB, Exposure time: 3 sec. 

Control experiments were performed to verify that no polymerization 

took place on a panel coated with the EEC/IPB mixture which was completely 

shaded from the light source, yet processed through the fusion lamp 

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Sh
ad

ow
 c
ur
e 
di
st
an

ce
 (m

m
)

Time (min)



www.manaraa.com

54 
 

conveyor.  No noticeable heat was generated in the panels, and a temperature 

indicator on the UV radiometer used to measure the light source intensity 

showed an increase in temperature through the conveyer/lamp system of only 

3-5 °C, indicating that very little thermal polymerization, if any, could have 

taken place. 

4.3.2.2 Post-illumination Diffusion and Kinetics 
Equations 4.1-4.8 were solved numerically to determine the active 

center concentrations produced in the illuminated region of the coating.  

Figure 4.8 shows the active center concentration as a function of the depth 

during the 3 second illumination period.  Due to the high intensity of the 

light source, the photoinitiator is completely consumed, resulting in the 

active center concentration reaching a maximum value (equal to the initial 

photoinitiator concentration) within the 3 seconds of illumination.  Therefore 

the active center concentration is considered to be uniform throughout the 80 

µm thick coating after the 3 seconds of illumination with the Fusion lamp. 

 

Figure 4.8. Active center concentration profiles throughout the 80 µm coating 
depth throughout the 3 second illumination time. 
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Since the active center concentration profile in the illuminated region 

is uniform throughout the thickness of the coating, diffusion of the active 

centers in the direction of the illuminating light (z-direction) does not occur.  

Therefore, this coating configuration can now be modeled as a one-spatial 

dimension problem.  Using Equations 4.11 and 4.12 (with the z-terms in the 

equations removed), the active centers diffusing into the shaded regions in 

the direction perpendicular to the illuminating light (the x-direction) were 

described.  The effective shadow cure diffusion coefficient used for this 

analysis was 1 x 10-4 cm2/sec, which was determined by fitting the 

experimental data shown in Figure 4.7 to the diffusion equation.  Figure 4.9 

shows the resulting active center concentration profiles diffusing during 30 

minutes post-illumination for a 2 cm illuminated region (left side of Figure 

4.9) and the first 2 cm of the shaded region (right side of Figure 4.9).   

 

Figure 4.9. Active center concentration profiles diffusing into the shadow 
region (x-direction) with increasing shadow cure time. 
Monomer: EEC, Initiator: 3 wt% IPB, Exposure time: 3 seconds. 
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The active center concentration profile begins as a vertical gradient at the 

end of the illumination time, and progressively becomes more uniform as the 

active centers from the illuminated region diffuse into the shaded region with 

increasing post-illumination time. 

In coating applications, the cure time required to reach macroscopic 

property development (tmpd) is especially important since it determines when 

a coated substrate may undergo additional process steps that involve contact 

with the surface.  At this time, the exposed surface of the coating must be 

tack-free, and the cure on the bottom of the coating, where it interfaces with 

the substrate, must be sufficient to ensure effective adhesion.  The tmpd was 

estimated by obtaining the active center concentration profiles at given 

positions within the shadow cure region, and entering these profiles into the 

integrated form of the polymerization rate equation for cationic 

polymerization, shown below. 

 (4.13) 

The tmpd is the cure time required to reach macroscopic property 

development, kp is the propagation rate constant, and mf/mi is the ratio of 

final monomer concentration to initial monomer concentration.  A 

conservative criterion of a 35% epoxide conversion was established to predict 

the tmpd, and the kp for EEC was determined previously to be 0.1 L/mol-sec 

(see Chapter 3 for details).   

Figure 4.10 contains plots of the active center concentration as a 

function of post-illumination time at various positions in the shadow cure 

region (x-direction).  The figure illustrates that the active center 

concentrations increase rapidly at positions close to the illuminated edge (2-4 
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mm into the shadow cure region) and increase very slowly at positions much 

farther from the illuminated region (16-20 mm into the shadow cure region). 

 

Figure 4.10. Cationic active center concentration as a function of time at 
various positions in the shadow cure region (x-direction).  
Monomer: EEC, Initiator: 3 wt% IPB, Exposure time: 3 seconds. 

The data shown in Figure 4.10 were integrated numerically to 

estimate the post-illumination cure time by applying Equation 4.13.  Figure 

4.11 shows a comparison between the experimentally determined cure times 

(from Figure 4.7) and the theoretical values predicted using this method.  

This figure indicates very good agreement between the experimental findings 

and theoretical predictions.  The shape of the plot shown in Figure 4.11 is 

very interesting because both the experimental data and model predictions 

demonstrate a linear dependence of shadow cure distance on time.  The 

shadow cure front progresses linearly with time until diffusing active centers 
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Figure 4.11. Experimental measurements of shadow cure distance into 
shaded region over 30 minutes post-illumination time.  
Monomer: EEC, Initiator: 3 wt% IPB, Exposure time: 3 seconds. 
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the width of the active center reservoir is so narrow that the active centers 

are completely depleted (less than a few millimeters) the shadow cure 

distance remains independent of the illuminated width. 

 

 

Figure 4.12. Active center concentration profiles diffusing into the shadow 
region (x-direction) with increasing shadow cure time for a) 1 cm 
illuminated width, and b) 4 cm illuminated width. 
Monomer: EEC, Initiator: 3 wt% IPB, Exposure time: 3 sec. 
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4.4 Shadow Cure Through Multiple Coating Layers 

Many commercial coatings contain multiple layers with the 

composition of each layer selected to promote the properties required for that 

layer.  For example, some layers may primarily promote adhesion, impart 

color, or change optical properties, while other layers may primarily impart 

scratch resistance or other desirable mechanical properties.  Curing multiple 

layers using thermal polymerization generally requires a complete cure cycle, 

which can include application of a monomer followed by heating for an 

extended period of time for each individual layer.  This process is 

cumbersome, time intensive, and increases the cost of the coating.  Examples 

of industries which use multi-layered coatings include automotive bodies, 

furniture and cabinetry, and resilient flooring. 

The remainder of this chapter presents a method for photo-

polymerizing multi-layered coatings.  In this method, long-lived cationic 

centers that are photo-generated in only one layer of a multi-layered coating 

lead to cure in multiple layers, even if the layers are added after 

illumination.  Rather than illuminate each layer individually after 

application of the monomer, this method requires only one illumination step 

to cure a coating containing multiple layers.  For example, when a second 

layer of monomer is applied to a previously photopolymerized sub-layer, 

cationic active centers created in the sub-layer can migrate into the monomer 

coating applied on top.  Therefore a fully cured coating comprised of two or 

more layers can be completely cured using only one illumination step. 

An additional advantage of this method is that cationic active centers 

can be used to cure pigmented coatings.  In the method described, one or 

more of the layers in a multi-layered coating may contain pigments.  Long-

lived cationic active centers have been shown to fully polymerize single-
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layered pigmented coatings (see Chapter 3).  However, pigmented coatings 

often require multiple layers to be polymerized.  For example, automotive 

body coatings can require application of a pigmented layer followed by a 

protective clear coat.  This method could be used to photo-cure a pigmented 

layer containing cationic photoinitiator, followed by a clear coat application 

that can be fully cured without further illumination.  Because this method 

reduces the number of illumination steps required and has the potential for 

use in pigmented coatings, it will be of potential commercial value in many 

industries where multiple layer protective coatings are utilized. 

4.4.1 Experimental Methods 

The experimental setups for two examples of the method introduced 

above are illustrated in Figures 4.13 and 4.14.  In the first set of experiments, 

Figure 4.13, the bottom layer only of a two-layer coating was illuminated.  A 

mixture of typical epoxide monomers commonly used for cationic 

photopolymerization was mixed with 1 wt% of either one of two cationic 

photoinitiators: (tolycumyl) iodonium tetrakis (pentafluorophenyl) borate 

(IPB, Secant Chemicals) or diaryliodonium hexafluoroantimonate (IHA, 

Sartomer).  The monomer mixture contained 70 wt% 3,4-epoxycyclohexyl-

methanyl 3,4-epoxycyclohexane-carboxylate (EEC, Sigma Aldrich) and 29 

wt% 2-butoxymethyl-oxirane (BMO, Hexion Specialty Co.).  BMO was added 

to reduce viscosity so that monomer solutions could be sprayed onto the 

aluminum substrate using an airbrush.  These experiments were conducted 

both with and without an additional 1 wt% of the pigment Titanium Dioxide 

(TiO2, Dupont) added to the monomer/ photoinitiator mixture in the bottom 

layer.  This layer was then irradiated for 10 minutes using a 200 Watt Hg-Xe 

arc lamp (Oriel Light Sources) with a measured irradiance of 50 mW/cm2.  A 
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Table 4-1. Results of shadow cure through multiple layers:  
bottom layer illuminated only 

Bottom Layer Top layer 

Exposure 
time 
(min) 

Time to 
tack-free 

(hrs) 

Average 
thickness 

(µm) 

EEC/BMO/1 wt% IHA EEC/BMO only 10 1.3 ± 0.2 51.4 

EEC/BMO/1 wt% IPB EEC/BMO only 10 1-2 51.8 

EEC/BMO/1wt% IPB EEC/BMO/ 
1wt% IPB 10 1-2 59.0 

EEC/BMO/1wt% IPB/ 
1wt% TiO2 EEC/BMO only 10 1-2 61.1 

EEC/BMO/1wt% IPB EEC/BMO/ 
1wt% TiO2 10 1-2 49.0 

 

In the second set of experiments, illustrated in Figure 4.14, two 

successive layers were sprayed onto the panels, one on top of the other using 

an airbrush.  The two layered coating was then illuminated for 10 minutes 

with the Hg-Xe lamp.  In these experiments, the bottom layer contained only 

monomer, with no photoinitiator.  Both layers cured within the illumination 

time regardless of the constituents of the layers.  Table 4.2 lists the 

combinations of monomer, photoinitiator, and pigment that were used in the 

two layers, as well as the overall thickness of the final coatings. 

Table 4-2. Results of shadow cure through multiple layers:  
top layer illuminated only 

Bottom Layer Top layer 

Exposure 
time 
(min) 

Time to 
tack-free 

(hrs) 

Average 
thickness 

(µm) 

EEC/BMO EEC/BMO/ 1wt% IPB 10 0 60.4 

EEC/BMO EEC/BMO/ 1wt% IPB/ 
1 wt% TiO2 10 0 82.9 
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In both sets of experiments, the cationic active centers were able to 

diffuse into an unilluminated layer containing no photoinitiator.  The driving 

force for this phenomenon is considered to be the concentration gradient 

between the two layers.  The films cured completely within 1-2 hours 

regardless of the constituents of the layers, and the cure time was not 

affected by the presence of pigment in the illuminated layer.  The results of 

these experiments have shown this method to be a novel use of cationic 

photopolymerization for curing multi-layer coatings. 

4.5 Conclusions 

The long lifetimes and mobility of cationic active centers have been 

shown in this chapter to provide a solution to some of the limitations to 

photopolymerizion of systems with complex shapes.  First, the theoretical 

description for post-illumination diffusion of cationic active centers was 

applied in two spatial dimensions.  This information provides a fundamental 

understanding of shadow cure in multiple dimensions.  Secondly, this 

approach was used to predict shadow cure distance in a direction 

perpendicular to the illumination for cationically polymerized epoxide 

coatings by coupling the diffusion analysis with the kinetic rate equation.  

These results showed very good agreement between theoretical predictions 

and experimental findings which showed that the coatings were able to 

shadow cure over substantial distances.  Finally, a novel method was 

introduced in which multiple layers of epoxide coatings can be cured using 

only a single illumination step.  This method is made possible by the mobility 

of the cationic active centers, which diffuse into the unilluminated layers.  All 

of these aspects of shadow cure show that cationic photopolymerization may 
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have tremendous potential in many applications where curing systems with 

complex geometries are required. 



www.manaraa.com

67 
 

CHAPTER 5  

THE POTENTIAL OF FREE-RADICAL SHADOW CURE 

5.1 Introduction 

The long-lived cationic active centers discussed previously in this 

contribution have shown great potential for mobility, resulting in cure of 

unilluminated regions of a photopolymer.  Free-radical active centers have 

significantly shorter lifetimes, and tend to terminate immediately upon 

cessation of the illuminating light source.  However, some cutting edge 

applications for photopolymers may necessitate the use of shadow cure in 

free-radical systems, specifically in some electronics applications.  Advances 

in microelectronics have led to an increase in demand for fine pitch 

technology, which is defined as electronic surface mount components that 

contain interconnections whose pitch, or spacing, is on the order of 100 to 600 

µm.  Despite the extremely short lifetimes of the free-radical active centers, 

mobility of free-radicals within these increasingly small dimensional scales is 

becoming a possibility. 

An example of an application in which free-radical shadow cure in 

photopolymerizations may become feasible is polymer-based conductive 

adhesives.  These types of adhesive materials are becoming more widely used 

in the electronics industry as a substitute for lead-based solders [9].  

Electrically conductive adhesives provide an environmentally friendly 

solution for interconnections in many electronics applications requiring fine 

pitch.  Isotropic conductive adhesives (ICAs) are heat-curable materials 

containing an isotropic concentration of conductive particles, typically silver-

filled epoxides, that allow current to flow in all directions through the cured 

polymer.  These adhesives can be used to electrically interconnect non-
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solderable substrates such as ceramics or plastics, or to replace solder for 

thermally-sensitive components.  ICAs can be used to replace tin/lead solder 

for surface mounting on printed circuit boards, where the increasing density 

of discrete components soldered onto the surface is reaching a limit. 

A second type of electrically conductive adhesive is anisotropic 

conductive adhesive, which allow current to flow along a unidirectional axis 

[8].  This type of adhesive is a composite containing fine electrically 

conductive particles uniformly dispersed in a polymer matrix.  The design of 

these anisotropic conductive adhesive materials results in no direct contact 

between the conductive particles, but allows for electrical interconnection 

only at planned sites where the particles come into direct contact with a 

conductive substrate.  The most common form these adhesives is a heat-

curable, thermoplastic, anisotropic conductive film (ACF) used for flexible 

printed circuits.   Ninety percent of all ACFs are currently sold for use in flat 

panel displays such as LCDs [10].  They are also used in flexible printed 

circuits, in which electronic circuits are mounted on flexible plastic 

substrates.  Flexible printed circuits are being used in many applications, 

such as electronic books and other forms of electronic paper, displays for 

cameras and cell phones, and computer keyboards. 

Figure 5.1 shows a schematic of the interconnection process for a 

typical flexible printed circuit assembly containing an ACF.  A polymer resin 

containing conductive particles is laminated between two printed circuits.  A 

specified temperature and pressure are applied until contact is made between 

the electrodes on the printed circuits and the conductive particles between 

them.  As a result, current is allowed to travel in the z-direction only, and not 

in the x/y plane.  Mechanical integrity of the assembly is maintained by the 

cured adhesive film. 
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The remainder of this chapter discusses an investigation of one 

possible formulation that could be used in a photopolymerizable ACF 

assembly, such as the one proposed in Figure 5.2.  One primary consideration 

in selecting a photopolymer system for this application is to attain full 

polymerization in unilluminated regions, behind electrodes and around 

conductive particles.  These regions are shaded from the initiating light 

source, and it is important that these shadow regions cure to an acceptable 

conversion.  A second consideration is that the substrate through which the 

ACF is illuminated may be only partially transparent, and may limit the 

initiating wavelengths.  This chapter first discusses the selection process for 

both the photoinitiator and illuminating light source chosen for this 

application, and then characterizes shadow cure behind the electrodes for the 

chosen system. 

5.2 Selection of Photoinitiator and Light 
Source for a Photopolymerizable ACF 

The majority of flexible circuits are printed on polyimide films, which 

are chosen for their superior thermal stability [51,52].  Using polyimide film 

as a substrate through which an ACF can be cured by photopolymerization 

presents a particular challenge since this material absorbs wavelengths 

below 500 nm.  This problem prohibits the use of UV light for this 

application, and requires selection of a visible light photoinitiator system for 

this application.  Appropriate light sources and photoinitiation systems were 

selected for effective photopolymerization through polyimide film. 

5.2.1 Materials and Experimental Methods 

The monomer used in these experiments was 2-hydroxyethyl acrylate 

(HEA, Sigma Aldrich).  The photosensitizers evaluated in this study included 
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Eosin Y (spirit-soluable), 3-hydroxy-2,4,5,7-tetraiodo-6-fluorone (H-Nu 535, 

Spectra Group, Inc.), Erythrocin B, Rose Bengal, and Camphorquinone.  

Except for the H-Nu 535, all photoinitiators were acquired from Sigma 

Aldrich.  These photosensitizers were used in combination with the electron 

donor N-methyl-diethanolamine (MDEA, Sigma Aldrich). The absorption 

spectra for the monomer and photoinitiators were determined in one 

nanometer increments using an 8453 UV-Visible spectrophotometer (Agilent 

Technologies).  The emission spectra of the illuminating light sources were 

collected using measured using a calibrated miniature fiber optic 

spectrometer (USB4000, Ocean Optics, Inc.) 

Monomer conversion was measured using Fourier transform infrared 

spectroscopy (FTIR), which has become a standard method for analyzing 

photopolymerization systems [53,54].  For each of these studies, a droplet of 

monomer was placed between two rectangular IR grade sodium chloride salt 

crystal slides, with 15 μm Teflon beads placed between both ends of the slides 

to serve as spacers. Infrared spectra were collected using a modified Bruker 

88 FTIR spectrometer designed to accommodate a horizontal sample.  The 

infrared absorption spectra were obtained before, during, and after 

illumination.  The =C‒H infrared absorbance peak at 812 cm-1, which is 

associated with an out-of-plane vibration, has traditionally been used to 

monitor acrylate conversion [53].  Conversion was calculated using Equation 

5.1: 

% Conversion  (5.1) 

where A0 is the absorbance at 812 cm-1 before irradiation, and At is the 

absorbance at time t.  The absorbance is found by measuring the baseline 

corrected peak height for the =C‒H out-of-plane band at 812 cm-1.   
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5.2.2 Results and Discussion 

5.2.2.1 Selection of Initiating Light Source for 
Photo-curing Through Polyimide Films 

In order to effectively cure acrylate resins through polyimide film, the 

emitted wavelengths of the illuminating light source must be matched with 

the absorptivity spectrum of visible light photoinitiator (which was in turn 

selected based upon the wavelengths transmitted through the film).  Mercury 

arc lamps are by far the most common light source used in industrial photo-

cure processes.  However, an alternative light source was necessary for use in 

this investigation since the mercury arc lamps emit very little light above 500 

nm.  Significant advances have been made in developing light emitting diodes 

(LEDs) to provide high intensity in the visible region of the spectrum. LEDs 

offer many advantages over traditional broad-spectrum lamps, the most 

important of which is high efficiency resulting in relatively low energy 

consumption.  In addition, LEDs can instantly be switched on and off, are 

ideal for heat sensitive materials (no stray IR emission), have long lifetimes 

(on the order of tens of thousands of hours of lamp life), do not contain 

hazardous vapors, and are light-weight/compact for customizable design and 

scaling.  Since these advantages make LEDs ideal for photo-curing 

applications, a high-intensity green LED (PhlatLight, Luminus Devices, Inc.) 

was selected for illuminating the visible-light photopolymerization systems 

evaluated in this study.   A 150 W xenon light source (MAX-150, Asahi 

Spectra) was also selected which provides higher intensity that the LED 

lamp.  Both light sources provide illumination in the 400 – 800 nm range 

required for this application, and do not interfere with the absorptivity of the 

polyimide film.  The emission spectra for both lamps, along with the 

polyimide film absorptivity, are shown in Figure 5.3. The emission spectra 
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were collected using the miniature fiber optic spectrometer positioned 8 cm 

from the light source. The total irradiance in this wavelength region (the 

integrated peak area from 400 – 800 nm) was 130 mW/cm2 for the xenon 

lamp and 10 mW/cm2 for the green LED.  The 150 W xenon lamp is therefore 

a much more efficient and highly intense light source across the entire visible 

region than the LED. 

 

Figure 5.3. Absolute irradiance of 150 W xenon lamp and high intensity 
green LED compared with absorbance of polyimide film. 

5.2.2.2 Visible Light Photoinitiator Systems 
Selected for Photo-curing Through 
Polyimide Films 

Illumination through a polyimide film necessitates the use of visible 

light photoinitiators.  Unlike typical ultraviolet photoinitiators, the energy of 

a photon in the visible region of the spectrum is generally less than the bond 

dissociation energy for most organic compounds, including photoinitiators.  

Therefore, visible-light-induced initiator systems are generally bimolecular 

initiator systems in which the active centers are produced via electron 
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transfer followed by proton transfer from the electron donor to the excited 

photosensitizer [55].  Five photosensitizers compatible with the wavelength 

range of the illuminating light required were screened for use in this study, 

in combination with the electron donor MDEA.  FTIR conversion was 

measured for HEA monomer containing concentrations of 0.07 wt% of 

photosensitizer and 2.5 wt% MDEA.  The 15 µm films were laminated 

between NaCl slides as described in section 5.2.1, and illuminated for 1 

minute with the green LED held 4 inches from the sample.   

Table 5-1. Overall conversions by FTIR for various visible light 
photoinitiators illuminated with green LED for one minute 

8 cm from light source. 

Photoinitiator Monomer 
Photoinitiator 
wt% 

MDEA 
wt% Conversion 

Eosin Y HEA 0.07 2.5 77.2 % 
H-Nu 535 HEA 0.07 2.5 66.4 % 
Erythrocin B HEA 0.07 2.5 51.7 % 
Rose Bengal HEA 0.07 2.5 < 30 % 
Camphorquinone HEA 0.07 2.5 < 30 % 

 

A comparison between the five photosensitizers shown in Table 5-1 

reveals that Eosin Y was found to provide the highest HEA conversion as 

measured by FTIR.  The absorption spectrum and molecular structure of the 

neutral form (spirit soluble) of Eosin Y is shown in Figure 5.4.   

The electron-transfer/proton-transfer reaction between Eosin Y and 

MDEA shown in Figure 5.5 has been previously investigated [56].  The triplet 

state of Eosin Y, [EYss]*, and the amine, A-H, form an exciplex similar to 

that described for other dyes and amines.   
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Figure 5.4. Eosin Y (spirit soluble) absorbance spectrum and molecular 
structure (0.001 wt% Eosin Y in methanol) 

 

 

Figure 5.5. Direct reaction between Eosin Y spirit soluble and MDEA [56]. 
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The addition of 0.15 wt% cumene hydroperoxide (Sigma Aldrich) to the 

two-component Eosin Y/MDEA visible light photoinitiator system resulted in 

a 10% increase in conversion measured by FTIR.  The overall conversion for 

the 3-component system was further increased by replacing the LED light 

source with the 150 W xenon lamp.  Figure 6 summarizes the average 

conversion for 3 or more experiments for 2 minute and 1 minute xenon lamp 

illumination times (95% and 92% for bars (a) and (b) respectively) compared 

with experiments illuminated using the green LED, both with and without 

the addition for the cumene hydroperoxide additive (87% and 77% for bars (c) 

and (d) respectively).   

 

Figure 5.6. Summary of FTIR conversion results for HEA films using Eosin 
Y/MDEA photoinitiator system with cumene hydroperoxide. 

The optimal 95% conversion shown in Figure 5.6a, for the 3-component 

system illuminated for two minutes with the xenon lamp, may be 

representative of a desirable conversion for an application such as ACF. 

Kinetic profiles of this optimized 3-component visible-light induced 

polymerization were investigated using real-time FTIR.  FTIR spectra were 

60% 70% 80% 90% 100%

d) Illuminated for 1 min. with green LED 
(Eosin Y/MDEA only)

c) Illuminated for 1 min. with green LED 
(Eosin Y/MDEA/Cumene Hydroperoxide)

b) Illuminated for 1 min. with Xe lamp  
(Eosin Y/MDEA/Cumene Hydroperoxide)

a) Illuminated for 2 min. with Xe lamp  
(Eosin Y/MDEA/Cumene Hydroperoxide)

FTIR Conversion
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collected at 1 second increments throughout the two minute irradiation 

period, and Eqn. 1 was used to calculate the change in conversion as a 

function of time.   The results are shown in Figure 5.7.  The contribution from 

dark cure to the overall conversion after the light was shuttered off is about 

1%.   

 

Figure 5.7. Real-time FTIR conversion during 2 minute illumination with 150 
W xenon lamp. 

Because the proposed ACF application may require illumination 

through a polyimide film, the effect of the polyimide absorbance on the 

overall conversion was investigated.  FTIR was again used to measure the 

HEA conversion.  In these experiments, a polyimide film of desired thickness 

was placed over the NaCl slides during the illumination.  The IR spectra 

were measured before and after illumination, and overall conversion was 

calculated using Equation 5.1.  Since the polyimide film absorbs strongly in 

the IR region of the spectrum, real-time FTIR measurements were not 

possible for these experiments.  These results are summarized in Figure 5.8 

below.  When illuminated through polyimide films, the conversion for the 
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optimized 3-component photoinitiator HEA system containing cumene 

hydroperoxide was reduced to 90% and 80% for the 25 µm and 75 µm 

polyimide film thicknesses respectively. 

 

Figure 5.8. FTIR conversion for HEA films using 3-component Eosin Y 
photoinitiator system. 

Although the addition cumene hydroperoxide was shown to enhance 

the overall conversion in HEA films over the two-component visible light 

photoinitiator system alone, the cumene hydroperoxide may possibly be an 

undesirable additive from a manufacturing perspective. Therefore, 

experiments were conducted to optimize the 2-component system containing 

only Eosin Y and MDEA, in an attempt to obtain the same level of conversion 

as the 3-component system (>90% conversion).  To meet this objective, several 

molar concentration ratios of MDEA/Eosin were screened, ranging from 180 

to 250 mol MDEA per mol Eosin Y.  These studies revealed an optimal molar 

ratio of approximately 250 mol/mol, and this ratio was maintained for the 

next set of studies in which the overall concentration was varied to identify 

the global optimum.  Figure 5.9 shows the results of the concentration study, 
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and indicates the optimum composition of the 2-component system: 0.074 

wt% Eosin Y and 3.69 wt% MDEA.    

 

Figure 5.9. Optimization of 2-component Eosin Y system.  Conversions 
calculated by FTIR. 1 minute illumination with 150 W Xe lamp.  

Kinetic profiles of the optimized 2-component visible-light induced 

polymerizations were investigated using real-time FTIR.  Real-time kinetic 

data were collected during illumination, and the corresponding profiles of the 

conversion as a function of time are shown in Figure 5.10.  The data in the 

figure illustrate that the real time conversion profile for the optimized 2-

component system at least as high as that of the original 3-component 

initiator system at all times.  The overall conversion for both samples at one 

minute, when the light was shuttered off, was approximately 92%.  The 

contribution from dark cure to the overall conversion after the light was 

shuttered off is about 0.5%. 

These FTIR data reveal that the optimized 2-componet initiator system 

results in an overall conversion of 92% (for one minute illumination) with no 

additional additives.  Therefore, the same approximate level of conversion 

80
82
84
86
88
90
92
94
96
98

100

0.05 0.06 0.07 0.08 0.09

Co
nv
er
si
on

 (%
)

Eosin Y Concentration (wt%)

Optimum Composition: 
0.074 wt% Eosin Y 
3.69 wt% MDEA 



www.manaraa.com

81 
 

that was achieved with the 3-component system including cumene 

hydroperoxide has been accomplished with the optimized 2-component 

system containing only Eosin Y and MDEA alone.   

 

Figure 5.10. Real-time FTIR conversion during 1 minute illumination with 
150 W xenon lamp.  HEA monomer, Eosin Y photoinitiator 
system with and without cumene hydroperoxide. 

Based upon the mechanistic considerations shown in Equations 5.2-

5.4, it is possible to speculate on the reason that the 2-component system 

containing excess amine performs as well as the 3-component initiator 

system containing cumene hydroperoxide.  Equation 5.4 indicates that the 

hydroperoxide reduces the oxygen inhibition by interacting with the amine to 

produce amine radicals.  These amine radicals in turn consume oxygen as 

shown in Equations 5.2 and 5.3.  However, Figure 5.5 illustrates that the 

Eosin dye also interacts with the amine to produce the same amine radicals.  

This is the reason that the increased concentrations of the Eosin Y and the 

amine can have the same effect on the reaction kinetics as the addition of the 

hydroperoxide. 
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5.3 Characterization of Shadow Cure 

5.3.1 Materials and Experimental Methods  

The optimized visible light photoinitiator systems described above 

were used to photopolymerize 100 µm thick HEA films representative of the 

proposed ACF system.  Transparent electrode-imbedded polyimide films were 

used as a substrate through which an acrylate resin was photo-cured, similar 

to the ACF system depicted in Figure 5.2.  Acrylate films were produced by 

placing a droplet of monomer sample into a 1 cm2 PET spacer with a 

thickness of 100 µm.  The spacer and monomer were laminated between an 

electrode imbedded polyimide film on the top surface, and a coated separation 

film on the bottom surface.  The laminated film was then placed on a black 

surface, and illuminated from the top down for 1 minute using the 150 W 

xenon lamp 8 cm from the sample. To visually observe the degree of cure, the 

films were removed from the substrates, placed onto glass slides, and 

observed with a polarized optical microscope (Nikon Corporation). 

5.3.2 Results and Discussion 

5.3.2.1 Visualization of the Spatial Cure Profile 
for Illumination Through an Electrode-
Containing PET Film 

Since the electrodes imbedded in the substrate are opaque, they serve 

to shade, or mask, alternating regions of the resulting photopolymer from the 

initiating light.  Figure 5.11 shows an example of the electrode imbedded 

polyimide film that was used as a substrate in these experiments, through 

which the HEA resin was photopolymerized using visible light.  The 

electrodes imbedded in the film shown in Figure 5.11 are 100 µm wide and 

spaced 100 µm apart.  This example is referred to 100 x 100 µm spacing.  
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Figure 5.13. Polarized light micrograph showing cross-section of HEA film 
containing optimized 2-component Eosin Y photoinitiator system.  
Illuminated for 1 mintue with 150 W xenon lamp through PET 
film containing 50x100 µm gold electrode spacing. 

The shape of the top surface of the film arises from the imprint created by the 

gold electrodes, therefore the regions under the indentations were not 

illuminated by the xenon lamp.  The textured appearance provided by the 

polarized light microscope indicates that this film may be fully cured polymer 

through the ~100 µm depth in both the illuminated and unilluminated 

regions.   

5.3.2.2 Predicting free-radical active center 
diffusion into unilluminated regions 

The generation of free-radical active centers produced during 

illumination is well understood, and may be described by a previously 

reported multi-wavelength simulation [31].  For an accurate description of 

the spatial photoinitiation profiles produced during the illumination step, it 
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is important to account for changes in the photoinitiator concentration as the 

initiator is consumed in the illuminated region.  Therefore, the active center 

generation as a function of position in a sample immediately after the 

illumination has ceased depends on a number of factors including the light 

intensity, initial photoinitiator concentration and absorbance, and exposure 

time.  This model is based upon the following set of fundamental differential 

equations which govern the evolution of the light intensity gradient and 

initiator concentration gradient for multi-wavelength illumination. 

The governing equations for light intensity, photoinitiator 

concentration, and photolysis product concentration were given in Chapter 4 

for polychromatic light (Equations 4.1-4.7). The solution to this set of 

equations provides detailed information regarding the time-evolution of the 

light intensity gradient and the initiator concentration gradient.  Simulation 

results for the 2-component Eosin Y photoinitiator system illuminated with 

the 150 W xenon lamp are shown in Figure 5.14 and Figure 5.15.  Figure 5.14 

shows the light intensity gradient as a function sample depth over a 1 minute 

illumination period.  Initially, the light intensity drops off rapidly at the 

surface of the sample (where depth = 0).  As the photoinitiator absorbs the 

initiating light and photobleaches, the light then penetrates farther into the 

depth of the system.  At one minute of illumination, the light has fully 

penetrated up to a few millimeters in depth.  The wavelength range used for 

this analysis was 425 - 575 nm, which is the range over which the 

photoinitiator Eosin Y absorbs. 
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Figure 5.14. Light intensity profile of a 3-component Eosin Y system 
initiatied with a 150 W xenon lamp(Io = 60 mW/cm2 in the 425 - 
575 nm spectral region). 

Figure 5.15 shows the depleting concentration of photoinitiator with 

illumination time.  As the initiating light is absorbed at the surface (depth = 

0), free-radical active centers are created, and the photoinitiator 

concentration diminishes.  These results illustrate that for a one minute 

illumination time, the photoinitiator is completely consumed for the first 2 

millimeters (2000 µm), indicating films with a thickness less than a few 

hundred micron will have the same conversion throughout their depth.  

Therefore, the FTIR studies of 15 µm films are equally valid for films over 

100 µm thick. 
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Figure 5.15. Photoinitiator concentration profile for a 3-component Eosin Y 
system initiated with a 150 W xenon lamp (Io = 60 mW/cm2 in 
the 425 - 575 nm spectral region). 

Previously in this contribution, cationic active centers were shown to 

migrate after the illumination ceased, resulting in shadow cure in 

unilluminated regions.  A similar analysis was used to predict the diffusion of 

free-radical active centers into the unilluminated regions of the masked 

polymer films.  Figure 5.16 shows the geometrical configuration used to 

develop the free-radical diffusion analysis.  The shadow regions indicated in 

the schematic are designed to represent the regions behind the electrodes for 

the conductive adhesive film application.  Within the illumination region, the 

one-dimensional active center generation model was used to calculate the 

light intensity and photoinitiator concentration in the z-direction, as shown 

in Figure 5.14 and Figure 5.15 above.   
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In this equation, CAC(x,t) is the active center molar concentration at time t, 

and width x,  and DAC is the diffusion coefficient for the active centers in 

units of length2/time.  The no-flux boundary condition for this system 

indicates that there is no transport of initiator or photolysis product across 

the planes of symmetry. 

(5.6)                                                               0,
=

∂
∂

x
t)(xC AC  

The active center concentration in free-radical polymerizations rapidly 

achieves a pseudo-steady-state value in the range of 10-7 to 10-9 mol/L [58].  

The concentration of active centers remains very low because the rate of the 

termination reaction, which consumes two free-radical active centers, is 

proportional to the square of the free-radical concentration. Therefore, any 

increase in the radical concentration leads to a greater increase in the 

termination rate (for example doubling the radical concentration would 

quadruple the termination rate), thereby driving the radical concentration 

back down.  The precise value of the active center concentration depends 

upon the initiator concentration and the light intensity as well as the 

termination rate constant. 

At a given location in the reaction system, the local active center 

concentration changes with time due to two simultaneous processes: diffusion 

and chemical termination.  The governing equation for the local active center 

concentration accounting for both of these processes is shown in Equation 5.7 

below: 

2
2

AC
2

AC
AC ),(2 

x
t)(x,C D

t
t)(x,C txCk ACt−⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
=

∂
∂             (5.7)

   
Equations 5.6-5.7 were solved numerically to provide profiles of the 

active center concentration as a function of the shadow cure time in the x-
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direction.  To solve this equation for the system geometry shown in Figure 

5.16, initial conditions and boundary conditions must be established.  For the 

initial condition, the active center concentration is assumed to be uniform in 

the illuminated region, and zero in the shaded region.  This initial condition 

allows for determination of the extent of diffusion as a function of time.  Two 

boundary conditions are required, and the symmetry of the system geometry 

leads to a flat concentration profile at each plane of symmetry (the no flux 

boundary condition, Equation 5.6).  The active center diffusion coefficient was 

estimated to be 1x10-5 cm2/sec based on literature reported values for 

acrylates [59].  The termination constant that was used was 1x105 L/mol-sec 

[58].  

Results for representative values of the active center concentration 

profiles are shown in Figure 5.17 and Figure 5.18.  To illustrate the effect of 

termination reactions on the potential for diffusion to lead to shadow cure, 

simulations were performed with and without termination for two different 

initial active center concentrations.  Figure 5.17a shows the simulation 

results for 10-8 active center concentration generated in the illumination 

region, assuming no termination during the post-illumination diffusion 

process (Equation 5.5).  These active center diffusion profiles can be 

compared to the case shown in Figure 5.17b where the termination rate is 

included (Equation 5.7).  Since the active center concentration is very low, the 

termination term in Equation 5.7 is negligible compared to the diffusion 

term, and the profiles are indistinguishable from each other. 

For an increased initial active center concentration of 10-6 mol/L, the 

simulation results for diffusion only, shown in Figure 5.18a, are similar to 

those at the lower concentrations in Figure 5.17.  However, due to the higher 

initial active center concentration, the termination rate is higher, resulting in 
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a reduction in active center concentration as it diffuses into the 

unilluminated region, as shown in Figure 5.18b.   

 

Figure 5.17. Post-illumination concentration profiles for active centers 
diffusing from illumination region (left side: 0-50 µm) to 
unilluminated region (right side: 50-100 µm) for initial 
concentration of 10-8 mol/L. a) diffusion only (Equation 5.5), 
b) diffusion and termination (Equation 5.7) 
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Figure 5.18. Post-illumination concentration profiles for active centers 
diffusing from illumination region (left side: 0-50 µm) to 
unilluminated region (right side: 50-100 µm) for initial 
concentration of 10-6 mol/L. a) diffusion only (Equation 5.5),  
b) diffusion and termination (Equation 5.7) 
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5.4 Conclusions 

According to the theoretical results reported in section 5.3.2.2, the 

diffusion of free-radical active centers into the unilluminated regions takes 

place very rapidly.  In all cases presented in Figure 5.17 and Figure 5.18, the 

diffusion is complete approximately 6 seconds after the illumination has 

ceased.  Since these are conservative estimates of diffusion rates, assuming 

no diffusion during the illumination period, these results support the 

hypothesis that the shaded regions of the films are likely polymerized due to 

shadow cure.  Macroscopic observation of the cured films using the polarized 

light microscope also support this, showing cured polymer in regions where 

unilluminated photoinitiator still exists. 

In this detailed discussion of a specific application where shadow cure 

is important on an extremely small dimensional scale, the potential for free-

radical active centers to provide shadow cure into unilluminated regions is 

demonstrated.  In the future, as the size of microelectronic components 

becomes smaller, shadow cure in free-radical photopolymerizations may 

become feasible for a wide variety of applications. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

In this contribution, the mobility of photo-generated active centers has 

been shown to result in shadow cure in a variety of applications.  First, the 

ability of long-lived cationic active centers to effectively cure coatings 

pigmented with carbon black was investigated.    Secondly, the mobility of 

cationic active centers was evaluated for use in curing photopolymers with 

complex geometries.  Finally, the potential of shadow cure in free-radical 

systems was investigated for a specific microelectronics application in which 

radical active centers migrate over relatively small dimensional scales.  In all 

of these applications, a theoretical description of active center generation and 

mobility was used to characterize shadow cure, and these findings were 

compared with experimental results.  In this chapter, an overview is provided 

of the major conclusions from each section of the research on these different 

applications, and recommendations for future research into these areas are 

summarized.  

6.1 Cationic Photopolymerization of Systems 
Pigmented with Carbon Black Nanoparticles 

The active centers responsible for cationic photopolymerizations are 

essentially non-terminating, and continue to propagate after the illumination 

has ceased.  The mobility of the long-lived cationic active centers was 

investigated for the cure of coatings pigmented with carbon black 

nanoparticles.  The spatial and temporal evolution of the cationic active 

center concentration profile during illumination was analyzed using the set of 

differential equations that govern the light intensity gradient and 

photoinitiator concentration gradient for polychromatic illumination.  Due to 
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the sharp light intensity and concentration gradients established in the 

pigmented systems, the photoinitiator diffusion during the illumination 

period was found to have a marked effect on the resulting active center 

concentration profiles.  Analysis of the active center reactive diffusion during 

the post-illumination period revealed that migration of the active centers 

leads to cure beyond the illuminated depth.  A kinetic analysis performed by 

coupling the active center concentration profiles with the propagation rate 

equation yielded estimates of cure time for coatings of varying thickness and 

pigment loading.  These theoretical cure times showed good agreement with 

experimental results obtained for photopolymerizations of cycloaliphatic 

diepoxide coatings pigmented with a monodisperse carbon black with mean 

hydrodynamic radius of 29.2 nm.  This slightly basic furnace black pigment 

was found to act as a mild inhibitor of cationic photopolymerization.  The 

results presented indicate that the long lifetimes and reactive diffusion of 

cationic active centers may be used for effective curing of carbon black 

pigmented coatings. 

This comprehensive approach could be applied to other types of 

pigmented or filled systems.  The characterization techniques presented here 

for evaluating the carbon black nanoparticle dispersion and optical properties 

may not be applicable for other types of pigments or fillers.  Some pigments 

are large aggregates that scatter and reflect light in addition to absorbing the 

UV irradiation necessary for photopolymerization.  In order to completely 

characterize other types of pigments or fillers in a photopolymer, the particle 

size and dispersion would need to be rigorously evaluated.  Other systems 

that could be evaluated in this manner for their ability to shadow cure 

include nanocomposites, conductive adhesives, and other types of filled 

photopolymer systems. 
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6.2 Cationic Active Center Mobility in Photopolymerization 
Systems with Complex Geometries 

This section provided a theoretical and experimental investigation of 

shadow cure in multiple spatial dimensions for cationically photopolymerized 

systems.  Cationic photopolymerization is an alternative to free-radical 

photopolymerization offering several unique advantages, especially for use in 

curing coatings on substrates with complex geometries.  First, the 

fundamental set of governing differential equations was used to describe the 

generation and post-illumination diffusion of cationic active centers in two 

spatial dimensions.  The results of this analysis provided a fundamental 

understanding of shadow cure in multiple dimensions so that these 

descriptions could be applied to systems with complex geometries.  Secondly, 

this approach was used to predict shadow cure distance in a direction 

perpendicular to the illumination for cationically polymerized epoxide 

coatings by coupling the diffusion analysis with the kinetic rate equation.  

These results showed very good agreement between theoretical predictions 

and the experimental findings which showed that the coatings shadow cured 

over substantial distances.  Finally, a novel method was presented in which 

long-lived cationic centers that are photo-generated in only one layer of a 

multi-layered coating lead to cure in multiple layers, even if the layers are 

added after illumination.  Using this method, a fully cured coating comprised 

of two or more layers can be completely cured using only one illumination 

step.  All of these examples of shadow cure in cationic photopolymerization 

indicate that there may be tremendous potential in many applications to use 

cationic photopolymerization to cure systems with complex geometries. 

A more rigorous kinetic analysis would be required in order to 

completely characterize the extent of cure in unilluminated regions.  For 

example, the effective diffusion coefficients reported in this contribution are 
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likely influenced by variables that have not yet been investigated.  For 

example, the conversion in the illuminated region during the post-

illumination diffusion period may have an effect on the diffusion rate as well 

as the overall extent of shadow cure.  The detailed active center concentration 

profiling demonstrated here should be coupled with a more detailed kinetic 

analysis that includes evaluation of actual conversions in order to completely 

characterize the shadow cure process.   Raman spectroscopy, FTIR, or thin 

film calorimetry could be utilized for this purpose. 

The mobility of the cationic active centers responsible for curing the 

multiple-layer systems should be further investigated.  For the purposes of 

the multiple coating layer application, the cycloaliphatic diepoxide used 

throughout this contribution (EEC) was co-polymerized with 2-butoxymethyl-

oxirane (BMO) so that the viscosity could be reduced and the coating could be 

applied with an airbrush.  A detailed kinetic analysis of the copolymer would 

need to be performed in order to fully characterize the extent of shadow cure 

in this system.  Again, conversions in the multi-layered photopolymer films 

would need to be measured so that the reactive diffusion process could be 

completely described. 

6.3 The Potential of Free-Radical Shadow Cure 

Free-radical active centers have significantly shorter lifetimes than 

cationic active centers, and tend to terminate immediately upon cessation of 

the photo-curing light source.  However, some cutting edge applications for 

photopolymers may necessitate the use of shadow cure in free-radical 

systems, specifically in some microelectronics applications.  Advances in 

microelectronics have led to demand for devices with increasingly small 

components.  Despite the extremely short lifetimes of the free-radical active 
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centers, mobility of free-radicals within these minute dimensional scales may 

become a possibility.  This section presented one formulation that could be 

developed to utilize free-radical shadow cure for the application anisotropic 

conductive adhesive film in flexible printed circuits.  The selection process for 

both the photoinitiator and illuminating light source for this application was 

described.  Free-radical mobility into unilluminated regions behind the 

imbedded electrodes in an ACF application was characterized using an 

analysis of post-illumination diffusion and termination reactions.  The results 

for free-radical shadow cure showed that the diffusion of active centers into 

the unilluminated regions takes place very rapidly, supporting the hypothesis 

that the shaded regions of the films are likely polymerized due to shadow 

cure.  Macroscopic observation of cured films indicated that cured polymer 

existed in shaded regions containing unilluminated photoinitiator.   

In order to completely characterize the extent of cure in unilluminated 

regions of a free-radical photopolymerization system, a more rigorous 

technique for spatial profiling would be required. Raman spectroscopy in 

combination with microscopy would provide a non-invasive method for 

extensively characterizing the extent of cure in the shaded regions of the film. 

A novel concept for inducing shadow cure in free-radical systems was 

conceived during this research, but not thoroughly investigated.  The idea is 

to introduce a fluorescent additive.  The absorption of light by the fluorescent 

additive can trigger the emission of another photon with a longer wavelength.  

In this manner, the fluorescent additive could diffuse into unilluminated 

regions, producing a multidirectional fluorescence, potentially resulting in 

indirect illumination within shadow regions.  Since visible light 

photosensitizers were used for this study of free-radical shadow cure, there is 

a potential that a photosensitizer could be found that would double as both a 



www.manaraa.com

100 
 

photosensitizer and a fluorescent additive.  Fluorescence spectroscopy would 

be required to begin to evaluate additives for such a system, and fluorescence 

monitoring would need to be coupled with spatial profiling to evaluate the 

effect on shadow cure. 

More than any other area covered by this research, free radical shadow 

cure has the greatest potential to grow into unchartered territory.  In typical 

applications currently employing photopolymerization for microelectronics, 

such as printed circuit boards, the goal is usually to attain high resolution.  

Therefore, shadow cure is something that tends to be avoided in these 

industries.  Deeper UV wavelengths are used to enhance resolution, and 

diffusion of active centers presents a limitation rather than an asset.  

Applications have generally not yet been developed in which diffusion of free-

radical active centers could be used to cure unilluminated regions of a 

photopolymer. 
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